Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Bunhiacopxki :
\(\sqrt{c}\cdot\sqrt{a-c}+\sqrt{c}\cdot\sqrt{b-c}\le\sqrt{\left[\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2\right]}\)
\(=\sqrt{\left(c+a-c\right)\left(c+b-c\right)}=\sqrt{ab}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\frac{c}{a-c}=\frac{c}{b-c}\Leftrightarrow a-c=b-c\Leftrightarrow a=b\)
Áp dụng bất đẳng thức cô - si cho 2 số không âm ta có :
\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)\)
\(\Rightarrow\dfrac{\sqrt{c\left(a-c\right)}}{\sqrt{ab}}+\dfrac{\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\le1\)
\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\left(đpcm\right)\)
Ta có : \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(\Leftrightarrow ac+ad+bc+bd\ge ac+2\sqrt{acbd}+bd\)
\(\Leftrightarrow ad-2\sqrt{adbc}+bc\ge0\)
\(\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi : \(ad=bc\)
Vậy ...
Sử dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(a+b\right)\left(c+d\right)=\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{c}^2+\sqrt{d}^2\right)\)
\(\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(< =>\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\left(đpcm\right)\)
okey?
+Chứng minh bất đẳng thức: \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Nó đúng vì tương đương với \(\left(ay-bx\right)^2\ge0\)
Áp dụng: \(VT^2=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)=ab\)
\(\Rightarrow VT\le\sqrt{ab}\)
a. áp dụng bđt cối \(\sqrt{c\left(a-c\right)}\le\frac{a}{2}\)
lm tương tự sau đó cô si lần nữa
Ad bđt Bu-nhia-cốp-xki:\(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(c+a-c\right)\)
ap dung bunhiacopski la ra