Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi vế trái ta có:
VT = (a + b)( a 2 – ab + b 2 ) + (a – b)( a 2 + ab + b 2 )
= a 3 + b 3 + a 3 – b 3 = 2 a 3 = VP
Vế trái bằng vế phải nên đẳng thức được chứng minh.
(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2
(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
(a+3)^3=(a+b)^2*(a+b)
=(a^2+2ab+b^2)(a+b)
=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3
=a^3+3a^2b+3ab^2+b^3
EZ NUB BRO CRY :>
Ta có : (a+b)2=2(a2+b2)
⇔a2+2ab+b2=2a2+2b2
⇔2ab=a2+b2
⇔a2-2ab+b2=0
⇔(a-b)2=0
⇔a-b=0
⇔a=b (đpcm)
học lại bảng hàng đẳng thức đáng nhớ đi nhá bro :>
Ta có: \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\)
hay a=b
a) Áp dụng BĐT Cosi với ab>0, ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)(đpcm)
b) Ta có: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Với mọi số thực:
`(a-b)^2>=0`
`<=>a^2-2ab+b^2>=0`
`<=>a^2+b^2>=2ab`
`<=>2(a^2+b^2)>=a^2+2ab+b^2`
`<=>2(a^2+b^2)>=(a+b)^2=4`
`<=>a^2+b^2>=2(đpcm)`
Dấu "=" `<=>a=b=1`
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\Rightarrow a^2+2ab+b^2=2a^2+2b^2\Rightarrow a^2-2ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a-b=0\Rightarrow a=b\left(đpcm\right)\)
\(\left(a+b\right)^2+\left(a-b\right)^2=\left(a^2+2ab+b^2\right)+\left(a^2-2ab+b^2\right)\)
\(=2\left(a^2+b^2\right)\)