Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a thuộc N nên a có dạng 5k,5k+1,5k+2,5k+3,5k+4
với a=5k thì a^2 và a chia hết cho 5 mà 2021 ko chia hết nên tổng ko chia hết
với a=5k+1 =>a2+a+2021=(5k+1)2+5k+1+2021=25k2+15k+2023 không chia hết cho 5
bạn làm tương tự với mấy cây còn lại, ko đc thì nói nhé
chúc bạn học tốt
NNBC-1/1/2022
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Giả sử: a ≥ b thì
a là bội của b nên a =b.k (k ∈ Z, k ≠ 0)
b là bội của a nên b = a.q (q ∈ Z, q ≠ 0, q ≥ k )
Thay b = a.q thì:
a = b.k = a.q.k
⇒q.k = 1
⇒k ∈ Ư (1) (k,q ∈ Z;k,q ≠ 0)
Mà q ≥ k
⇒k = 1,q = −1;k = q = 1
Nếu q = 1; k= -1 thì b.k = b.(-1) = -b
Nếu q = 1; k= 1 thì b.k = b.1 = b,đpcm
\(10^{2021}+8=1....0+8⋮9\) (vì có tổng các chữ số là 9 chia hết cho 9)
\(10^{2021}+8=....00+8=....008⋮8\) (vì có 3 chữ số tận cùng là 008 chia hết cho 8)
Mà \(\left(8;9\right)=1\) nên \(10^{2021}+8⋮72\) hay là bội của 72
ta có a+2021 và a+2020 là hai số tự nhiên liên tiếp
nên chắc chắc có 1 số chẵn trong hai số đó
vậy tích (a+2021)(a+2020) là số chẵn, hay là bội của 2
Ta có :
a²+a+2021
= a.a+a+2021
= a.(a+1)+2021
Ví a.(a+1) là tích hai số liên tiếp nên có tân cùng là 0;1;2;6
⇒ a.(a+1)+2021 có tân cùng là 1;2;3;7 và không chia hết cho 5
Vậy a²+a+2021 không chia hết cho 5