K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

đề bạn sai rồi nha thử thay n= 1 hoặc 3 vào thì A ko là SCP!

14 tháng 9 2015

Bài này rất đơn giản dùng tính chất quan trọng của số chính phương là:

Một số chính phương khi chia 3 chỉ dư 0 hoặc 1

Chứng minh bổ đề:

Ta có : a là số nguyên nên a trong ba dạng: 3k  ;  3k+1   hoăc  3k+2  với k nguyên

Với a=3k thì \(a^2=9k^2\)chia 3 dư 0

Với a=3k+1 thì \(a^2=\left(3k+1\right)^2=9k^2+6k^2+1\) chia 3 dư 1

Với a=3k+2 thì \(a^2=\left(3k+2\right)^2=9k^2+12k^2+4\) chia 3 dư 1

Bài giải

Ta đặt: \(A=a^3+3a^2+2a+2=a\left(a^2+3a+2\right)+2=\left(a+1\right)\left(a+2\right)a+2\)

Vì a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 3

nên a(a+1)(a+2) chia hết cho 3 nên A chia 3 dư 2

Vậy A không là số chính phương

13 tháng 9 2015

khó quá , s zúp đc 

AH
Akai Haruma
Giáo viên
23 tháng 6

Lời giải:

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}$

$\Leftrightarrow \frac{ab+bc+ac}{abc}=\frac{1}{abc}$
$\Rightarrow ab+bc+ac=1$

Do đó:

$a^2+1=a^2+ab+bc+ac=(a+b)(a+c)$

$b^2+1=b^2+ab+bc+ac=(b+c)(b+a)$

$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$

$\Rightarrow M=(a^2+1)(b^2+1)(c^2+1)=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)=[(a+b)(b+c)(c+a)]^2$

Vậy $M$ là scp.

AH
Akai Haruma
Giáo viên
23 tháng 6

Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) nhé.

13 tháng 6 2015

n2+d=a2

=>(n-a)(n+a)=d

2n2 chia hết cho d

=>2n2 chia hết cho (n-a)(n+a)

Đến đây học lớp 8 làm vậy là tắc