K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(1+\tan^2a=\dfrac{1}{\cos^2a}\)

nên \(\dfrac{1}{\cos^2a}=\dfrac{169}{144}\)

\(\Leftrightarrow\cos a=\dfrac{12}{13}\)

=>\(\sin a=\dfrac{5}{13}\)

b: \(\sin a=\sqrt{1-0.4^2}=\dfrac{\sqrt{21}}{5}\)

\(\tan a=\dfrac{\sqrt{21}}{2}\)

\(\cot a=\dfrac{2\sqrt{21}}{21}\)

21 tháng 8 2018

bài 1 : ta có : \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\left(0,6\right)^2=\dfrac{16}{25}\)

\(\Rightarrow cosa=\pm\dfrac{4}{5}\)

\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\pm\dfrac{3}{4}\) \(\Rightarrow cotx=\dfrac{1}{tanx}=\pm\dfrac{4}{3}\)

bài 2)

ý 1 : a) ta có : \(\dfrac{1}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=tan^2a+1\left(đpcm\right)\)

b) ta có : \(\dfrac{1}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=1+cot^2a\left(đpcm\right)\)

c) \(cos^4a-sin^4a=\left(sin^2a+cos^2a\right)\left(cos^2a-sin^2a\right)\)

\(=cos^2a-sin^2a=2cos^2a-cos^2a-sin^2a=2cos^2a-1\left(đpcm\right)\)

ý 2 :

ta có : \(tana=2\Rightarrow cota=\dfrac{1}{2}\)

ta có : \(tan^2a+1=\dfrac{1}{cos^2a}\Leftrightarrow cos^2a=\dfrac{1}{tan^2a+1}=\dfrac{1}{5}\)

\(\Rightarrow cosa=\pm\dfrac{1}{\sqrt{5}}\Rightarrow sin^2a=1-cos^2a=\dfrac{4}{5}\) \(\Rightarrow sina=\pm\dfrac{2}{\sqrt{5}}\)

vậy ............................................................................

bài 3 bạn tự luyện tập như bài 2 cho quen nha :)

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Bạn thiếu hình vẽ.

24 tháng 7 2021

Cách giải làm sao vậy ad

 

6 tháng 10 2021

Ko biết làm

Bài 1: 

\(\cos\alpha=\dfrac{4}{5}\)

\(\tan\alpha=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{4}{3}\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Lời giải:

Áp dụng công thức $\sin ^2a+\cos ^2a=1$ và BĐT Bunhiacopxky:

$(\sin a+\cos a)^2\leq (\sin ^2a+\cos ^2a)(1+1)=2$

$\Rightarrow \sin a+\cos a\leq \sqrt{2}$
Vậy GTLN của $\sin a+\cos a$ là $\sqrt{2}$

Bài 2: 

\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)

\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)

\(\cot a=\dfrac{24}{7}\)

28 tháng 10 2022

cot a=1/5 nên cosa/sina=1/5

=>sina=5cosa

\(1+cot^2a=\dfrac{1}{sin^2a}=1+\dfrac{1}{25}=\dfrac{26}{25}\)

nên \(sina=\dfrac{5}{\sqrt{26}}\Leftrightarrow cosa=\dfrac{1}{\sqrt{26}}\)

\(cot^4a+sin^2a-cos^2a\)

\(=\dfrac{1}{5^4}+25cos^2a-cos^2a\)

\(=\dfrac{1}{5^4}+24\cdot\dfrac{1}{26}=\dfrac{7513}{8125}\)