Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(10^{100}+10^{1000}+7=(10^{100}-1)+(10^{1000}-1)+9\\
=\underbrace{999...9}_{100}+\underbrace{999...9}_{1000}+9\)
Tổng này chia hết cho 9 do 3 số hạng đều chia hết cho 9.
\(7^{1000}=\left(7^4\right)^{250}=\left(49\cdot49\right)^{250}\)có tận cùng là 1
\(3^{1000}=\left(3^4\right)^{250}=\left(9\cdot9\right)^{250}\)có tận cùng là 1
Hiệu \(7^{1000}-3^{1000}\)có tận cùng là 0 nên chia hết cho 10. đpcm.
Ta có:
71000 - 31000
= (74)250 - (34)250
= (...1)250 - (...1)250
= (...1) - (...1)
= (...0) chia hết cho 10
=> đpcm
Ủng hộ mk nha ☆_☆^_-
10^100=100...00(có 100 số 0)
100...00-7=9999.....9993(có 99 số 9 và 1 số 3)
999...993 chia hết cho 3
Vì:9+9+....+9+3 chia hết cho 3
Vậy 10^100-7 chia hết cho 3