Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x^2-3x\right)\left(4+3x-4x^2\right)-6=\left(4x^2-3x\right)\left[4+\left(3-4x^2\right)\right]-6\)
\(=-\left(4x^2-2x\right)^2+4\left(4x^2-3x\right)-6\)\(=-\left(4x^2-3x\right)^2+4\left(4x^2-3x\right)-4-2\)
\(=-\left(4x^2-3x-2\right)^2-2< 0\)
Đơn giản hơn :)
( 4x2 - 3x )( 4 + 3x - 4x2 ) - 6
= -( 4x2 - 3x )( 4x2 - 3x - 4 ) - 6
Đặt t = 4x2 - 3x
bthuc <=> -t( t - 4 ) - 6
= -t2 + 4t - 6
= -( t2 - 4t + 4 ) - 2
= -( t - 2 )2 - 2
= -( 4x2 - 3x - 2 )2 - 2 ≤ -2 < 0 ∀ x
=> đpcm
\(a,4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x\right)^2+2.2x.1+1^2=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
\(b,4x^2-4x-8=0\)
\(\Leftrightarrow4\left(x^2-x-2\right)=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
\(c,\left(3x-4\right)^2-14\left(3x-4\right)\left(6+3x\right)+49\left(3x+6\right)=16\)
\(\Leftrightarrow\left(3x-4\right)^2-14\left(3x-4\right)\left(3x+6\right)\left(3x+6\right)+49=16\)
\(\Leftrightarrow\left(3x-4\right)^2-14\left(3x-4\right)\left(3x+6\right)+49\left(3x+6\right)=16\)
\(\Leftrightarrow9x^2-24x+16-126x^2-252x+168x+336+147x+294=16\)
\(\Leftrightarrow-117x^2+39x+646=16\)
\(\Leftrightarrow117x^2-39x-646+16=0\)
\(\Leftrightarrow117x^2-39x+630=0\)
\(\Leftrightarrow...\)
x^4-2x^3+4x^2-3x+2=0
⇔ x^4-2x^3+x^2+3x^2-3x+2=0
⇔ (x^4-2x^3+x^2) + 3(x^2-x+1/4) + 5/4=0
⇔ (x^2-x)^2 + 3(x-1/2)^2 + 5/4=0
(vì (x^2-x)^2 ≥ 0 với mọi x
⇒ (x^2-x)^2 + 3(x-1/2)^2 + 5/4 > 0 với mọi x
⇒ Phương trinh trên vô nghiệm
a ) \(2x^2-5x+4\)
\(=2\left(x^2-\dfrac{5}{2}x+2\right)\)
\(=2\left(x^2-2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{7}{16}\right)\)
\(=2\left[\left(x-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\right]\)
\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{7}{8}\)
Do\(2\left(x-\dfrac{5}{4}\right)^2\ge0\forall x\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}>0\left(đpcm\right)\)
b ) \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]\)
\(=-\left(x-2\right)^2-1\)
Do \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\left(đpcm\right)\)
c ) Sai đề : Đây là đề theo cách sửa của mik :
\(-4+3x-3x^2\)
\(=-3\left(x^2-x+\dfrac{4}{3}\right)\)
\(=-3\left(x^2-x+\dfrac{1}{4}+\dfrac{13}{12}\right)\)
\(=-3\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{13}{12}\right]\)
\(=-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\)
Do \(-3\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\le\dfrac{-13}{4}< 0\left(đpcm\right)\)
B = x2 + 4x + 6
= (x2 + 4x + 4) + 2
= (x + 2)2 + 2 > 0
D = x2 + x + 1
= (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0
F = 2x2 + 4x + 3
= (2x2 + 4x + 2) + 1
= (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0
H = 4x2 + 4x + 2
= (4x2 + 4x + 1) + 1
= (2x + 1)2 + 1 > 0
K = 4x2 + 3x + 2
= (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
= (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0
L = 2x2 + 3x + 4
= (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
= (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0
Vậy các biểu thức trên luôn dương với mọi x
\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)
\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x
Đặt \(4x^2-3x=a\)
\(\Rightarrow\left(4x^2-3x\right).\left(4+3x-4x^2\right)-6=a.\left(4-a\right)-6=4a-a^2-6=-\left(a^2-4a+6\right)=-\left[\left(a-2\right)^2+2\right]< 0\)