Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2^{4n}-1\)
\(=\left(2^4-1\right)\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...+1\right)\)
\(=15\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...+1\right)\)
Mà \(n\in N\)
\(\Rightarrow15\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...1\right)⋮15\)
\(\Rightarrow2^{4n}-1⋮15\forall n\in N\)
Ta có:
\(16\equiv1\left(mod15\right)\)
\(\Leftrightarrow2^4\equiv1\left(mod15\right)\)
\(\Leftrightarrow2^{4n}\equiv1\left(mod15\right)\)
\(\Leftrightarrow2^{4n}-1\equiv0\left(mod15\right)\)
\(\Leftrightarrow2^{4n}-1⋮15\)
a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)
\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)
b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)
mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)
\(\Rightarrow16^n-15n-1⋮15\)
\(\left(4m-1\right)\left(n-4\right)-\left(m-4\right)\left(4n-1\right)\)= 4mn-16m-n+4-4mn+m+16n=15n-15m=15(n-m)
Thấy 15 chia hết cho 5 => 15(m+n) chia hết cho 5 với mọi x
Ta có: \(2^{4n}-1=\left(2^4\right)^n-1⋮2^4-1\Rightarrow2^{4n}-1⋮15\)
\(2^{4n}-1=\left(2^4\right)^n-1^n=\left(2^4-1\right)\left[\left(2^4\right)^{n-1}+...+1\right]=15M\) .Vậy \(2^{4n}-1⋮15\)