K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:
Áp dụng định lý Fermat nhỏ:

Với $a$ là số tự nhiên sao cho $(a,11)=1$ thì:

$a^{10}\equiv 1\pmod {11}\Rightarrow a^{3330}\equiv 1\pmod {11}$

$\Rightarrow a^{3331}\equiv a\pmod {11}$

Còn với mọi $a\vdots 11$ thì $a^{3331}\equiv a\pmod {11}$ (hiển nhiên)

Do đó:

$1^{3331}+2^{3331}+...+2020^{3331}\equiv 1+2+3+...+2020\equiv 1010.2021\equiv 9.8\equiv 6\pmod {11}$

$\Rightarrow 1^{3331}+2^{3331}+...+2020^{3331}-6\equiv 0\pmod {11}$

Ta có đpcm.

22 tháng 9 2023

\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có: Với 3 số a,b,c ít nhất có 1 cặp a,b,c cùng chẵn hoặc cùng lẻ

=> \(\left[{}\begin{matrix}a+b⋮2\\b+c⋮2\\c+a⋮2\end{matrix}\right.\)=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮6\)

=> \(a^3+b^3+c^3⋮6\)

22 tháng 9 2023

Cảm ơn ak

7 tháng 11 2017

bí quá thì viết hằng đẳng thức ra

* cách khác: thêm bớt a+b+c , áp dụng tích 3 số tự nhiên liên tiếp chia hết cho 6

ở đây 3 số liên tiếp đó có dạng a(a-1)(a+1), (lần lượt với b và c tương tự