Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{1}{4}\)
\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{1}{20}\)
\(\Rightarrow D=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy \(D< \frac{1}{2}\)
\(D=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Nhận xét: \(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)
\(\Rightarrow D< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy D < 1/2
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ta có: \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}\) (vì từng phân số lớn hơn \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
Mà \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}>\frac{1}{2}\)
Chúc bn học tốt
Các bạn nào giúp mình trong tối nay 4 \ 5 \2016 sẽ được nha ...
Ta có:\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{1}{2}.\frac{10}{39}\)
\(=\frac{5}{39}\)
\(a,\frac{3}{17}+\frac{-5}{13}+\frac{-18}{35}+\frac{14}{17}+\frac{17}{-35}\)
=\(-\frac{5}{13}+\left(\frac{3}{17}+\frac{14}{17}\right)+\left(\frac{-18}{35}+\frac{-17}{35}\right)\)
= \(-\frac{5}{13}+1+\left(-1\right)\)
=\(-\frac{5}{13}\)
\(b,\frac{-3}{8}.\frac{1}{6}+\frac{3}{-8}.\frac{5}{6}+\frac{-10}{6}\)
=\(\frac{-3}{8}.\left(\frac{1}{6}+\frac{5}{6}\right)+\frac{-10}{6}\)
=\(\frac{-3}{8}.1+\frac{-10}{6}\)
=\(-\frac{49}{24}\)
\(c,\frac{-4}{11}.\frac{5}{15}.\frac{11}{-4}\)
=\(\left(\frac{-4}{11}.\frac{11}{-4}\right).\frac{1}{3}\)
=\(1.\frac{1}{3}=\frac{1}{3}\)
\(d,\frac{13}{8}+\frac{1}{8}:\left(0,75-\frac{1}{2}\right)-25\%.\frac{1}{2}\)
=\(\frac{13}{8}+\frac{1}{8}:\left(\frac{3}{4}-\frac{1}{2}\right)-\frac{1}{4}.\frac{1}{2}\)
=\(\frac{13}{8}+\frac{1}{8}:\frac{1}{4}-\frac{1}{8}\)
=\(\frac{13}{8}+\frac{1}{2}+\frac{-1}{8}\)
=\(\left(\frac{13}{8}+\frac{-1}{8}\right)+\frac{1}{2}\)
=\(\frac{3}{2}+\frac{1}{2}=2\)
\(e,\frac{-1}{2^2}-\left(-2\right)^2-5\)
=\(\frac{-1}{4}-4-5\)
=\(-\frac{37}{4}\)
\(f,\frac{121}{3}-\frac{5}{7}:\left(24-\frac{23}{57}\right)\)
=\(\frac{121}{3}-\frac{5}{7}:\frac{1345}{57}\)
=\(\frac{121}{3}-\frac{57}{1883}\)
\(\approx40,4\)