Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2m - 1 là 1 số nguyên tố, mà 2 lại là một số chẵn nên kết quả 2m - 1 chắc chắn là số chẵn, mà 2m - 1 là số chẵn nguyên tố nên 2m - 1 = 2 => 2m - 1 = 21 => m - 1 = 1
Vậy m = 1 + 1 = 2, mà 2 là số nguyên tố nên m là số nguyên tố
TH1:n=3 => 3n+2=11 là snt
TH2:n>3
+)n=3k+1(k\(\in\)N) => 3n+2=3(3k+1)+2=9k+5 là snt
+)n=3k+2(k\(\in\)N) => 3n+2=3(3k+2)+2=9k+8 là snt
Qua các trường hợp trên ta luôn có đpcm
xét n=4k, 4k+1, 4k+2, 4k+3
lưu ý : số chính phương chia 4 dư 0 hoặc 1
Nếu n là số lẻ thì số lẻ nhân với một số lẻ được tích cũng là số lẻ => 3n là một số lẻ
Mà một số chẵn cộng với một số lẻ được tổng là một số lẻ => 3n + 2 là một số nguyên lẻ nếu n lẻ
3n + 2 là số nguyên lẻ <=> 3n là số nguyên lẻ . ( vì 2 là số nguyên chẵn ) .
<=> n là số nguyên lẻ .
Ngược lại : n là số nguyên lẻ
=> 3n là số nguyên lẻ .
=> 3n + 2 là số nguyên lẻ . ( vì 2 là số nguyên chẵn )
Do đó bài toán được chứng minh .
Lời giải:
Nếu $p$ không chia hết cho $3$ thì $p\equiv \pm 1\pmod 3\Rightarrow p^2\equiv 1\pmod 3$
$\Rightarrow 8p^2+1\equiv 8+1\equiv 0\pmod 3$
Mà $8p^2+1>3$ nên $8p^2+1$ không là snt (trái giả thiết)
Vậy $p=3$. Khi đó $8p^2-1=71$ là số nguyên tố (đpcm)