K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DC

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//BD và \(ME=\dfrac{BD}{2}\)

Xét ΔMAE có

D là trung điểm của AE

DI//ME

Do đó: I là trung điểm của AM

hay IA=IM

b: Xét ΔAME có 

I là trung điểm của AM

D là trung điểm của AE

Do đó: ID là đường trung bình của ΔAME

Suy ra: \(ID=\dfrac{ME}{2}\)

\(\Leftrightarrow BD=4\cdot ID\)

NM
1 tháng 10 2021

undefinedđáp án đây bạn nhé 

7 tháng 2 2016

Cau hoi nhieu vay thi bao ai tra loi cho noi

1 tháng 7 2016

trả lời hộ mk vs nha

1 tháng 7 2016

 mình không biết cái đề nó có vấn đề gì ko chứ ko thề nào nó là hbh dc . nếu nó hình bh có ak vuông de nó sẽ laf hình thôi nhưng ko thề nào dc vì ao khong = ok lấy đâu ra hbh

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của BD

Do đó: ME là đường trung bình

=>ME//CD

hay ID//ME

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó:I là trung điểm của AM

1 tháng 10 2021

Kẻ BH // với AC

Ta có :

AB=BD

AH//AC

=>BH là đường trung bình của tam giác ADK

=> BH =1/2 AK

Xét ΔBHM và ΔKMC có :

KMC^ = BMH^ (đối đỉnh)

CM=MB

ˆMBH=ˆCKM ( so le trong )

=> ΔBHM và ΔKMC (g-c-g)

=> KC=BH = 1/2 AK

Hay AK= 2 KC

1 tháng 10 2021

Kẻ \(BH\text{//}AC\), ta có :

\(AB=BD\)

\(AH\text{//}AC\)

\(\Rightarrow BH\) là đường trung bình của  \(\bigtriangleup ADK\)

\(\Rightarrow BH=\frac{1}{2}AK\)

Xét \(\bigtriangleup BHM\) và \(\bigtriangleup KMC\) có

\(\widehat{KMC}=\widehat{BMH}\) (đđ)

\(CM=MC\)

\(\widehat{MBH}=\widehat{CKM}\) (so le trong)

\(\Rightarrow\bigtriangleup BHM\) và \(\bigtriangleup KMC\) (g.c.g)

\(\Rightarrow KC=BH=\frac{1}{2}AK\) hay \(AK=2KC\)

4 tháng 8 2017

I A B D C M O

4 tháng 8 2017

Vì ABCD là hình thang cân nên \(\widehat{A1} = \widehat{B2}\), AC=BD.

Ta có : \(\widehat{A1}+\widehat{A2}=180 độ (kề bù) \widehat{B1}+\widehat{B2}=180 độ\)

\(\widehat{A_1}=\widehat{B_2} =>\widehat{A_2}=\widehat{B_1}\) => tam giác IAB cân tại I

Vì M là trung điểm của AM=MB=> IM là đường trung tuyến

Vì tam giác IAB cân nên IM đồng thời là đường đường trung trực, đường phân giác.

=>IM vuông góc AB(1)

Xét tam giác IOA và tam giác IOB:

IA=IB(tam giác IAB cân)

\(\widehat{I_1}=\widehat{I_2}\)(IM là phân giác)

IO chung

Do đó: tam giác IOA = tam giác IOB (cgc)

=> IA=IB(2 cạnh tương ứng)

OA=OB(2 cạnh tương ứng)

nên I,O thuộc đường trung trực của AB

=> IO vuông góc AB(2)

Từ (1) và (2) => I,O,M thẳng hàng (đccm)