Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(BC=BH+HC=3,6+6,4=10\left(cm\right)\)
Tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BC.BH\\ \Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\left(cm\right)\)
Tương tự:
\(AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\left(cm\right)\)
Ta có: \(AH^2=BH.CH\)
\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4,8\left(cm\right)\)
b) Tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông) nên EF = AH = 4,8 (cm)
c) Tam giác AHB vuông tại H có EH là đường cao (gt) \(\Rightarrow AH^2=AB.AE\)
Tương tự tam giác AHC ta có \(AH^2=AC.AF\Rightarrow AB.AE=AC.AF\)
Xét tam giác AEF và tam giác ABC có:
\(\widehat{FAE}.chung\)
\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\left(vì.AB.AE=AC.AF\right)\)
Do đó tam giác AEF đồng dạng tam giác ABC.
a) Tính độ dài các đoạn thẳng: AcB, AC, AH.
Có: AH2 = HB . HC
=> AH = \(\sqrt{3,6.6,4}=4,8\) (cm)
BC = HB + HC = 3,6 + 6,4 = 10 (cm)
=> AB2 = HB . BC
=> AB = \(\sqrt{3,6.10}=6\) (cm)
=> AC = \(\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\) (cm)
b/ Chứng minh rằng: AB.AE = AC.AF.
Gọi I là giao điểm giữa AH và EF
Có: AFE + AEF = 900 (1)
ABH + BAH = 900 (2)
mà AEHF là hình chữ nhật (vì A = E = F = 900)
=> tam giác AIE cân
=> BAH = AEF
=> (1) => AFE + BAH = 900 (3)
Từ (2) và (3) => ABH = AFE
Xét tam giác ABC và tam giác AFE có:
góc A chung
ABC = AFE (chứng minh trên)
=> \(\Delta ABC\Omega\Delta AFE\) (gg)
=> \(\frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)(đpcm)
a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.
Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.
Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.
b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2
Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.
c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)
Vậy, ta đã chứng minh AF = AE * tan(B).
d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB
Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB
Vậy, ta đã chứng minh CE/BF = AC/AB.
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AH^2=AE\cdot AB\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AH^2=AF\cdot AC\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
\(\Leftrightarrow\frac{AE}{AC}=\frac{AF}{AB}\)
Xét ΔAFE và ΔABC có
\(\frac{AE}{AC}=\frac{AF}{AB}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAFE∼ΔABC(c-g-c)
Ta có: BC=BH+CH(H nằm giữa B và C)
hay BC=1,6+2,5=4,1cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=1.6\cdot4.1=6.56\\AC^2=2.5\cdot4.1=10.25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{6.56}=\frac{2\sqrt{41}}{5}cm\\AC=\sqrt{10.25}=\frac{\sqrt{41}}{2}cm\end{matrix}\right.\)
Ta có: ΔABC vuông tại A(gt)
\(\Leftrightarrow S_{ABC}=\frac{AB\cdot AC}{2}=\frac{\frac{2\sqrt{41}}{5}\cdot\frac{\sqrt{41}}{2}}{2}=\frac{41}{5}\cdot\frac{1}{2}=4.1cm^2\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh BC, ta được:
\(AH^2=HB\cdot HC=1.6\cdot2.5=4\)
hay \(AH=\sqrt{4}=2cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh AB, ta được:
\(AH^2=AE\cdot AB\)
\(\Leftrightarrow2^2=AE\cdot\frac{2\sqrt{41}}{5}\)
\(\Leftrightarrow AE=4:\frac{2\sqrt{41}}{5}=4\cdot\frac{5}{2\sqrt{41}}=\frac{10\sqrt{41}}{41}cm\)
Ta có: ΔAFE∼ΔABC(cmt)
\(\Leftrightarrow\frac{S_{AFE}}{S_{ABC}}=\left(\frac{AE}{AC}\right)^2=\left(\frac{10\sqrt{41}}{41}:\frac{\sqrt{41}}{2}\right)^2\)
\(\Leftrightarrow\frac{S_{AFE}}{4.1}=\left(\frac{10\sqrt{41}}{41}\cdot\frac{2}{\sqrt{41}}\right)^2=\frac{400}{1681}\)
\(\Leftrightarrow S_{AFE}=\frac{400\cdot4.1}{1681}=\frac{40}{41}cm^2\)
a) Áp dụng hệ thức lượng vào tam giác vuông ABC, ta có:
\(AB^2=BH.BC=BH\left(BH+HC\right)=3,6\left(3,6+6,4\right)=3,6.10=36\)
\(\Rightarrow AB=\sqrt{36}=6\)(cm)
\(AC^2=HC.BC=HC\left(BH+HC\right)=6,4\left(3,6+6,4\right)=6,4.10=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
\(AH^2=HB.HC=3,6.6,4=23,04\)
\(\Rightarrow AH=\sqrt{23,04}=4,8\left(cm\right)\)
b) Xét tứ giác AEHF có 3 góc vuông: \(\widehat{EAF};\widehat{AEH};\widehat{HFA}\)
=> Tứ giác AEHF là hình chữ nhật
=> EF=AH=4,8(cm)
c) Áp dụng hệ thức lượng vào tam giác vuông AHB, ta có:
\(AH^2=AE=AB\)(1)
Áp dụng hệ thức lượng vào tam giác vuông AHC, ta có:
\(AH^2=AF.AC\left(2\right)\)
Từ (1) và (2) suy ra: AE.AB=AF.AC
d) Theo kết quả câu c: \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AF}=\dfrac{AC}{AB}\)
Xét \(\Delta AEF\) và \(\Delta ACB:\)
\(\widehat{EAF}=\widehat{BAC}=90^o\)
\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\left(cmt\right)\)
\(\Rightarrow\Delta AEF~\Delta ACB\left(c-g-c\right)\)