K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AH^2=AE\cdot AB\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AH^2=AF\cdot AC\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

\(\Leftrightarrow\frac{AE}{AC}=\frac{AF}{AB}\)

Xét ΔAFE và ΔABC có

\(\frac{AE}{AC}=\frac{AF}{AB}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAFE∼ΔABC(c-g-c)

Ta có: BC=BH+CH(H nằm giữa B và C)

hay BC=1,6+2,5=4,1cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=1.6\cdot4.1=6.56\\AC^2=2.5\cdot4.1=10.25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{6.56}=\frac{2\sqrt{41}}{5}cm\\AC=\sqrt{10.25}=\frac{\sqrt{41}}{2}cm\end{matrix}\right.\)

Ta có: ΔABC vuông tại A(gt)

\(\Leftrightarrow S_{ABC}=\frac{AB\cdot AC}{2}=\frac{\frac{2\sqrt{41}}{5}\cdot\frac{\sqrt{41}}{2}}{2}=\frac{41}{5}\cdot\frac{1}{2}=4.1cm^2\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh BC, ta được:

\(AH^2=HB\cdot HC=1.6\cdot2.5=4\)

hay \(AH=\sqrt{4}=2cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh AB, ta được:

\(AH^2=AE\cdot AB\)

\(\Leftrightarrow2^2=AE\cdot\frac{2\sqrt{41}}{5}\)

\(\Leftrightarrow AE=4:\frac{2\sqrt{41}}{5}=4\cdot\frac{5}{2\sqrt{41}}=\frac{10\sqrt{41}}{41}cm\)

Ta có: ΔAFE∼ΔABC(cmt)

\(\Leftrightarrow\frac{S_{AFE}}{S_{ABC}}=\left(\frac{AE}{AC}\right)^2=\left(\frac{10\sqrt{41}}{41}:\frac{\sqrt{41}}{2}\right)^2\)

\(\Leftrightarrow\frac{S_{AFE}}{4.1}=\left(\frac{10\sqrt{41}}{41}\cdot\frac{2}{\sqrt{41}}\right)^2=\frac{400}{1681}\)

\(\Leftrightarrow S_{AFE}=\frac{400\cdot4.1}{1681}=\frac{40}{41}cm^2\)

1: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp (O)

2: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

góc OAC+góc AFE

=góc AHE+góc OCA

=góc ABC+góc ACB=90 độ

=>FE vuông góc AO

19 tháng 10 2021

Gọi G là trung điểm AH, I là trung điểm EF, MN là đtb tg ABC

Dễ thấy NG//BC;MG//BC nên M,N,G thẳng hàng

Xét tg AEF và tg HEF có AI;HI là trung tuyến ứng vs ch EF nên \(AI=HI=\dfrac{1}{2}EF\)

Do đó tg AIH cân tại I

Mà IG là trung tuyến (G là trung điểm AH) nên IG là đg cao hay \(IG\perp AH\left(1\right)\)

Xét tg AHB vuông tại H có HM là trung tuyến ứng ch AB nên \(AM=HM=\dfrac{1}{2}AB\)

Do đó tg AHM cân tại M

Mà MG là trung tuyến (G là trung điểm AH) nên MG là đg cao hay \(MG\perp AH\left(1\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow MG//GI\)

Từ đó ta được M;G;I thẳng hàng

Do đó I;M;N thẳng hàng

Vậy trung điểm EF là I nằm trên đt cố định là đường trung bình MN của tg ABC

 

30 tháng 10 2023

loading...  loading...  

loading...

a: ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>HC*4=3^2=9

=>HC=2,25(cm)

BC=BH+CH

=2,25+4

=6,25(cm)

XétΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB^2=2,25\cdot6,25\\AC^2=4\cdot6,25\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2,25\cdot6,25}=3,75\left(cm\right)\\AC=\sqrt{25}=5\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

=>\(\widehat{B}=90^0-37^0=53^0\)

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>HA=EF=3(cm)

c: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

13 tháng 10 2022

a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)

b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)

=>HF=2HE

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

b) Xét ΔMEB và ΔMCF có 

\(\widehat{MEB}=\widehat{MCF}\left(=\widehat{AEF}\right)\)

\(\widehat{M}\) chung

Do đó: ΔMEB\(\sim\)ΔMCF(g-g)

Suy ra: \(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)

hay \(ME\cdot MF=MB\cdot MC\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)(hai góc tương ứng)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)