K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, xét \(\Delta BAD\)\(\Delta CAE\)có:

         \(\widehat{BAD}=\widehat{CAE}\)(góc chung)

        \(\widehat{BDA}=\widehat{CEA}\left(90^0\right)\)

\(\Rightarrow\Delta BAD~\Delta CAE\left(g.g\right)\)

\(b,\)xét \(\Delta EHB\)\(\Delta DHC\)có:

          \(\widehat{EHB}=\widehat{DHC}\)(đối đỉnh)

          \(\widehat{HEB}=\widehat{HDC}\left(=90^0\right)\)

\(\Rightarrow\Delta EHB~\Delta DHC\left(g.g\right)\)

\(\Rightarrow\frac{HE}{HD}=\frac{HB}{HC}\Rightarrow HE.HC=HB.HD\)

c,\(HE.HC=HB.HD\Rightarrow\frac{HE}{HB}=\frac{HD}{HC}\)

xét\(\Delta EHD\)\(\Delta BHC\)

        \(\frac{HE}{HB}=\frac{HD}{HC}\left(cmt\right)\)

         \(\widehat{EHD}=\widehat{BHC}\)(đối đỉnh)

\(\Rightarrow\Delta EHD~\Delta BHC\left(c.g.c\right)\)

2 tháng 3 2022

a, Xét tam giác BAD và tam giác CAE có 

^A _ chung 

^BDA = ^CEA = 900

Vậy tam giác BAD ~ tam giác CAE (g.g) 

b, => ^ABD = ^ACE (2 góc tương ứng) 

Xét tam giác HBE và tam giác HCD ta có 

^HBE = ^HCE (cmt) 

^BHE = ^CHD (đ.đ) 

Vậy tam giác HBE ~ tam giác HCD (g.g) 

\(\dfrac{HB}{HC}=\dfrac{HE}{HD}\Rightarrow HD.HB=HE.HC\)

c, xem lại cách viết cạnh tương ứng tam giác bạn nhé 

Xét tam giác BHC và tam giác EHD ta có 

\(\dfrac{BH}{EH}=\dfrac{HC}{HD}\)(tỉ lệ thức của tỉ số đồng dạng trên) 

^BHC = ^EHD (đ.đ)

Vậy tam giác BHC ~ tam giác EHD (c.g.c) 

 

 

26 tháng 2 2023

a)

xét tam giác EHB và tam giác DHC có

góc BEC = góc CDH = 90 độ

góc EHB = góc DHC (hai góc đối đỉnh)

=> tam giác EHB đồng dạng tam giác DHC (g-g)

b)

vì tam giác EHB đồng dạng tam giác DHC (cmt)

=> `(HB)/(HC)=(HE)/(HD)` (tính chất)`

=> `HB*HD=HE*HC`

26 tháng 2 2023

Bạn tự vẽ hình nhé

mik dùng máy tính nên ko chụp dc

a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB∼ΔDHC(góc nhọn)

b) Ta có: ΔEHB∼ΔDHC(cmt)

\(\Leftrightarrow\frac{HE}{HD}=\frac{HB}{HC}\)(hai cặp cạnh tương ứng tỉ lệ)

hay \(\frac{HE}{HB}=\frac{HD}{HC}\)

Xét ΔHED và ΔHBC có

\(\frac{HE}{HB}=\frac{HD}{HC}\)(cmt)

\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔHED∼ΔHBC(c-g-c)

c) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{DAB}\) chung

Do đó: ΔADB∼ΔAEC(g-g)

\(\Leftrightarrow\frac{AD}{AE}=\frac{AB}{AC}\)(hai cặp cạnh tương ứng tỉ lệ)

hay \(\frac{AD}{AB}=\frac{AE}{AC}\)

Xét ΔADE và ΔABC có

\(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)

\(\widehat{DAE}\) chung

Do đó: ΔADE∼ΔABC(c-g-c)

d) Gọi K là giao điểm của AH và BC

Xét ΔABC có

BD là đường cao ứng với cạnh AC(gt)

CE là đường cao ứng với cạnh AB(gt)

BD\(\cap\)CE={H}

Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)

⇔AH⊥BC

⇔AK⊥BC(AH\(\cap\)BC={K})

Xét ΔBKH vuông tại K và ΔBDC vuông tại D có

\(\widehat{DBC}\) chung

Do đó: ΔBKH∼ΔBDC(góc nhọn)

\(\Leftrightarrow\frac{BK}{BD}=\frac{BH}{BC}\)(hai cặp cạnh tương ứng tỉ lệ)

hay \(BK\cdot BC=BH\cdot BD\)

Xét ΔCKH vuông tại K và ΔCEB vuông tại E có

\(\widehat{ECB}\) chung

Do đó: ΔCKH∼ΔCEB(g-g)

\(\Leftrightarrow\frac{CK}{CE}=\frac{CH}{CB}\)(hai cặp cạnh tương ứng tỉ lệ)

hay \(CK\cdot CB=CE\cdot CH\)

Ta có: \(BD\cdot BH+CE\cdot CH=BK\cdot BC+CK\cdot BC\)

\(=BC\cdot\left(BK+CK\right)=BC\cdot BC=BC^2\)(đpcm)

12 tháng 8 2020

Hình tự vẽ nha:))

a) Xét ΔEHB và ΔDHC có:

∠BEH=∠CDH=90o

∠EHB=∠DHC(đối đỉnh)

Do đó, ΔEHB∼ΔDHC (gg).

b) Xét ΔHED và HBC có:

\(\frac{HE}{HB}=\frac{HD}{HC}\)(ΔEHB∼ΔDHC)

∠DHE=∠BHC (đđ)

Do đó,ΔHED∼ΔHBC(cgc)

c) Xét ΔADB và ΔAEC có:

∠A chung

∠ADB=∠AEC=90o

Do đó, ΔADB∼ΔAEC(gg)

Xét ΔAED và ΔABC có:

∠A chung

\(\frac{AD}{AB}=\frac{AE}{AC}\)(ΔADB∼ΔAEC)

Do đó, ΔAED∼ΔABC(cgc)

d) Vẽ HK⊥BC(K∈BC)

ΔBHK∼ΔBDC(gg)⇒\(\frac{BK}{BD}=\frac{BH}{BC}\)⇔BK.BC=BH.BD

ΔCHK∼ΔCBE(gg)⇒\(\frac{CK}{CE}=\frac{CH}{CB}\)⇔CK.BC=CE.CH

⇒BC(BK+CK)=BH.BD+CE.CH

⇔BC2=BH.BD+CE.CH (đpcm)

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔABE∼ΔACF(g-g)

b) Ta có: ΔABE∼ΔACF(cmt)

nên \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

c) Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

d) Xét ΔEBC vuông tại E và ΔDAC vuông tại D có

\(\widehat{DCA}\) chung

Do đó: ΔEBC∼ΔDAC(g-g)

19 tháng 3 2021

3) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{FH}{EH}=\dfrac{BH}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)

Xét ΔFHE và ΔBHC có 

\(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)(cmt)

\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔFHE\(\sim\)ΔBHC(c-g-c)

1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(đpcm)

1 tháng 3 2018

A E B D C H

a, Xét \(\Delta BAD\)và \(\Delta CAE\), có:

\(\widehat{AEC}=\widehat{ADB}=90^o\)(gt)

\(\widehat{A}\)là góc chung (gt)

\(\Rightarrow\) \(\Delta BAD\)đồng dạng \(\Delta CAE\)(trường hợp đồng dạng thứ 3)

b, Xét \(\Delta BHE\)và \(\Delta CHD\), có:

\(\widehat{BHE}=\widehat{CHD}\)(đối đỉnh)

\(\widehat{BEH}=\widehat{CDH}=90^o\)(vì ​\(\widehat{BEC}=\widehat{CDB}=90^o\), gt)

\(\Rightarrow\Delta BEC\)đồng dạng với \(\Delta CHD\)(trường hợp đồng dạng thứ ba)

\(\Rightarrow\frac{HB}{HE}=\frac{HC}{HD}\Leftrightarrow HB.HD=HC.HE\left(đpcm\right)\)

c, Xét \(\Delta BHC\)và \(\Delta DHE\), có:

\(\widehat{BHC}=\widehat{DHE}\)(đối đỉnh)

\(\frac{HB}{HE}=\frac{HC}{HD}\)(chúng minh trên)

\(\Rightarrow\Delta BHC\)đồng dạng với \(\Delta DHE\)(trường hợp đồng dạng thứ hai)

d, Xét \(\Delta ADB\)và \(\Delta BEH\), có:

\(\widehat{B}\)là góc chung (gt)

\(\widehat{ADB}=\widehat{BEC}=90^o\)(gt)

\(\Rightarrow\Delta ADB\)đồng dạng với \(\Delta BEH\)(trường hợp đồng dạng thứ ba)

Mà: \(\Delta BEH\)đồng dạng với \(\Delta CDH\)(c/m câu b)

\(\Rightarrow\Delta ADB\)đồng dạng với \(\Delta CDH\)(theo tính chất bắc cầu)

\(\Rightarrow\frac{DH}{DE}=\frac{DC}{DB}\Leftrightarrow DH.DB=DA.DC\left(đpcm\right)\)

Chúc bạn học tốt!

28 tháng 2 2018

H là giao điểm của BD và CE à ? Trong đề không có cho dữ kiện này