Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác BAD và tam giác CAE có
^A _ chung
^BDA = ^CEA = 900
Vậy tam giác BAD ~ tam giác CAE (g.g)
b, => ^ABD = ^ACE (2 góc tương ứng)
Xét tam giác HBE và tam giác HCD ta có
^HBE = ^HCE (cmt)
^BHE = ^CHD (đ.đ)
Vậy tam giác HBE ~ tam giác HCD (g.g)
\(\dfrac{HB}{HC}=\dfrac{HE}{HD}\Rightarrow HD.HB=HE.HC\)
c, xem lại cách viết cạnh tương ứng tam giác bạn nhé
Xét tam giác BHC và tam giác EHD ta có
\(\dfrac{BH}{EH}=\dfrac{HC}{HD}\)(tỉ lệ thức của tỉ số đồng dạng trên)
^BHC = ^EHD (đ.đ)
Vậy tam giác BHC ~ tam giác EHD (c.g.c)
a)
xét tam giác EHB và tam giác DHC có
góc BEC = góc CDH = 90 độ
góc EHB = góc DHC (hai góc đối đỉnh)
=> tam giác EHB đồng dạng tam giác DHC (g-g)
b)
vì tam giác EHB đồng dạng tam giác DHC (cmt)
=> `(HB)/(HC)=(HE)/(HD)` (tính chất)`
=> `HB*HD=HE*HC`
a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(góc nhọn)
b) Ta có: ΔEHB∼ΔDHC(cmt)
\(\Leftrightarrow\frac{HE}{HD}=\frac{HB}{HC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{HE}{HB}=\frac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\frac{HE}{HB}=\frac{HD}{HC}\)(cmt)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED∼ΔHBC(c-g-c)
c) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
\(\Leftrightarrow\frac{AD}{AE}=\frac{AB}{AC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{AD}{AB}=\frac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)
\(\widehat{DAE}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)
d) Gọi K là giao điểm của AH và BC
Xét ΔABC có
BD là đường cao ứng với cạnh AC(gt)
CE là đường cao ứng với cạnh AB(gt)
BD\(\cap\)CE={H}
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
⇔AH⊥BC
⇔AK⊥BC(AH\(\cap\)BC={K})
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔBKH∼ΔBDC(góc nhọn)
\(\Leftrightarrow\frac{BK}{BD}=\frac{BH}{BC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(BK\cdot BC=BH\cdot BD\)
Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
\(\widehat{ECB}\) chung
Do đó: ΔCKH∼ΔCEB(g-g)
\(\Leftrightarrow\frac{CK}{CE}=\frac{CH}{CB}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(CK\cdot CB=CE\cdot CH\)
Ta có: \(BD\cdot BH+CE\cdot CH=BK\cdot BC+CK\cdot BC\)
\(=BC\cdot\left(BK+CK\right)=BC\cdot BC=BC^2\)(đpcm)
Hình tự vẽ nha:))
a) Xét ΔEHB và ΔDHC có:
∠BEH=∠CDH=90o
∠EHB=∠DHC(đối đỉnh)
Do đó, ΔEHB∼ΔDHC (gg).
b) Xét ΔHED và HBC có:
\(\frac{HE}{HB}=\frac{HD}{HC}\)(ΔEHB∼ΔDHC)
∠DHE=∠BHC (đđ)
Do đó,ΔHED∼ΔHBC(cgc)
c) Xét ΔADB và ΔAEC có:
∠A chung
∠ADB=∠AEC=90o
Do đó, ΔADB∼ΔAEC(gg)
Xét ΔAED và ΔABC có:
∠A chung
\(\frac{AD}{AB}=\frac{AE}{AC}\)(ΔADB∼ΔAEC)
Do đó, ΔAED∼ΔABC(cgc)
d) Vẽ HK⊥BC(K∈BC)
ΔBHK∼ΔBDC(gg)⇒\(\frac{BK}{BD}=\frac{BH}{BC}\)⇔BK.BC=BH.BD
ΔCHK∼ΔCBE(gg)⇒\(\frac{CK}{CE}=\frac{CH}{CB}\)⇔CK.BC=CE.CH
⇒BC(BK+CK)=BH.BD+CE.CH
⇔BC2=BH.BD+CE.CH (đpcm)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE∼ΔACF(g-g)
b) Ta có: ΔABE∼ΔACF(cmt)
nên \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AB=AE\cdot AC\)(đpcm)
c) Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)
nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
d) Xét ΔEBC vuông tại E và ΔDAC vuông tại D có
\(\widehat{DCA}\) chung
Do đó: ΔEBC∼ΔDAC(g-g)
3) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB\(\sim\)ΔEHC(g-g)
Suy ra: \(\dfrac{FH}{EH}=\dfrac{BH}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)
Xét ΔFHE và ΔBHC có
\(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)(cmt)
\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔFHE\(\sim\)ΔBHC(c-g-c)
1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(đpcm)
a, Xét \(\Delta BAD\)và \(\Delta CAE\), có:
\(\widehat{AEC}=\widehat{ADB}=90^o\)(gt)
\(\widehat{A}\)là góc chung (gt)
\(\Rightarrow\) \(\Delta BAD\)đồng dạng \(\Delta CAE\)(trường hợp đồng dạng thứ 3)
b, Xét \(\Delta BHE\)và \(\Delta CHD\), có:
\(\widehat{BHE}=\widehat{CHD}\)(đối đỉnh)
\(\widehat{BEH}=\widehat{CDH}=90^o\)(vì \(\widehat{BEC}=\widehat{CDB}=90^o\), gt)
\(\Rightarrow\Delta BEC\)đồng dạng với \(\Delta CHD\)(trường hợp đồng dạng thứ ba)
\(\Rightarrow\frac{HB}{HE}=\frac{HC}{HD}\Leftrightarrow HB.HD=HC.HE\left(đpcm\right)\)
c, Xét \(\Delta BHC\)và \(\Delta DHE\), có:
\(\widehat{BHC}=\widehat{DHE}\)(đối đỉnh)
\(\frac{HB}{HE}=\frac{HC}{HD}\)(chúng minh trên)
\(\Rightarrow\Delta BHC\)đồng dạng với \(\Delta DHE\)(trường hợp đồng dạng thứ hai)
d, Xét \(\Delta ADB\)và \(\Delta BEH\), có:
\(\widehat{B}\)là góc chung (gt)
\(\widehat{ADB}=\widehat{BEC}=90^o\)(gt)
\(\Rightarrow\Delta ADB\)đồng dạng với \(\Delta BEH\)(trường hợp đồng dạng thứ ba)
Mà: \(\Delta BEH\)đồng dạng với \(\Delta CDH\)(c/m câu b)
\(\Rightarrow\Delta ADB\)đồng dạng với \(\Delta CDH\)(theo tính chất bắc cầu)
\(\Rightarrow\frac{DH}{DE}=\frac{DC}{DB}\Leftrightarrow DH.DB=DA.DC\left(đpcm\right)\)
Chúc bạn học tốt!
a, xét \(\Delta BAD\)và\(\Delta CAE\)có:
\(\widehat{BAD}=\widehat{CAE}\)(góc chung)
\(\widehat{BDA}=\widehat{CEA}\left(90^0\right)\)
\(\Rightarrow\Delta BAD~\Delta CAE\left(g.g\right)\)
\(b,\)xét \(\Delta EHB\)và\(\Delta DHC\)có:
\(\widehat{EHB}=\widehat{DHC}\)(đối đỉnh)
\(\widehat{HEB}=\widehat{HDC}\left(=90^0\right)\)
\(\Rightarrow\Delta EHB~\Delta DHC\left(g.g\right)\)
\(\Rightarrow\frac{HE}{HD}=\frac{HB}{HC}\Rightarrow HE.HC=HB.HD\)
c,\(HE.HC=HB.HD\Rightarrow\frac{HE}{HB}=\frac{HD}{HC}\)
xét\(\Delta EHD\)và\(\Delta BHC\)có
\(\frac{HE}{HB}=\frac{HD}{HC}\left(cmt\right)\)
\(\widehat{EHD}=\widehat{BHC}\)(đối đỉnh)
\(\Rightarrow\Delta EHD~\Delta BHC\left(c.g.c\right)\)