K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

A C B D M

Do tổng ba góc trong tam giác bằng 180o mà tam giác ABC có số đo các góc lần lượt tỉ lệ với 3, 2, 1 nên ta có: 

\(\widehat{A}=90^o;\widehat{B}=60^o;\widehat{C}=30^o\)

Ta có \(\Delta AMD=\Delta CMD\left(c-g-c\right)\Rightarrow\widehat{MAD}=\widehat{MCD}=30^o\)

\(\Rightarrow\widehat{BAM}=\widehat{BAC}-\widehat{MAD}=90^o-30^o=60^o\)

Xét tam giác ABM có \(\widehat{ABM}=\widehat{BAM}=60^o\Rightarrow\widehat{AMB}=60^o\)

Vậy tam giác ABM là tam giác đều.

29 tháng 2 2020

tự mà lm

28 tháng 2 2020

số đo các góc A,B,C lần lượt tỉ lệ với 3; 2; 1 

=> A/3 = B/2 = C/1

=> (A+B+C)/(3+2+1) = A/3 = B/2 = C/1

A + B + C = 180

=>  180/6 = 30 = A/3 = B/2 = C/1

=> A = 30.3 = 90

     B = 30.2 = 60

     C = 30

28 tháng 2 2020

a)XÉT\(\Delta ABC\)

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)

gọi các GÓC A,B,C LẦN LƯỢT LÀ a,b,c TỈ LỆ VỚI 3;2;1

\(\Rightarrow a:b:c=3:2:1\)

\(\Rightarrow\frac{a}{3}=\frac{b}{2}=\frac{c}{1}\)và \(a+b+c=180\)

theo tính chất dãy tỉ số bằng nhau có

 \(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{3+2+1}=\frac{180}{6}=30\)

do đó \(\frac{a}{3}=30\Rightarrow a=3.30=90\)

\(\frac{b}{2}=30\Rightarrow b=2.30=60\)

\(\frac{c}{1}=30\Rightarrow c=1.30=30\)

vậy \(\widehat{A}=90^0;\widehat{B}=60^o;\widehat{C}=30^o\)

7 tháng 7 2016

Tổng các góc trong tam giác là 180 độ

Gọi số đo các góc lần lượt là x,y,z

Ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)

=> x=90; y=60; z=30

Tam giác ABC vuông tại A

D trung điểm AC; DM vuông góc BC => M trung điểm BC

=> AM trung tuyến thuộc cạnh huyền

=> Góc ABM = góc BAM = 60 độ

=> Tam giác ABM đều

7 tháng 7 2016

Khoan vẽ hình bài này bạn có thể làm xong câu a rồi quay lên trên vẽ hình cho dễ

A B C D M

a)Gọi số đo 3 góc A;B;C của tam giác ABC lần lượt là: x;y;z

Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}\) và x+y+z=180 (tổng 3 góc của tam giác)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)

Suy ra: \(\frac{x}{3}=30\Rightarrow x=90;\frac{y}{2}=30\Rightarrow y=60;z=30\)

Vậy số đo 2 góc A;B;C lần lượt là : 90o;60o;30o

Câu b đợi mik nghĩ tí

24 tháng 12 2021

Tổng các góc trong tam giác là 180 độ

Gọi số đo các góc lần lượt là x,y,z

Ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)

=> x=90; y=60; z=30

Tam giác ABC vuông tại A

D trung điểm AC; DM vuông góc BC => M trung điểm BC

=> AM trung tuyến thuộc cạnh huyền

=> Góc ABM = góc BAM = 60 độ

=> Tam giác ABM đều

25 tháng 12 2021

a, xet tam giac ABD va tam giac ACD co : AD chung

AB = AC do tam giac ABC can tai A (gt)

goc BAD = goc CAD do AD la phan giac cua goc A (gt)

=> tam giac ABD = tam giac ACD (c - g - c)

=> BD = CD (dn)

xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...

goc B = goc C do tam giac ABC can tai  A(gt)

=> tam giac BED = tam giac CFD (ch - gn)

=> DE = DF (dn)

b, cm o cau a

c, tam giac ABD = tam giac ACD (cau a)

=> goc ADC = goc ADB (dn)

goc ADC + goc ADB = 180 (kb)

=> goc ADC = 90

co DB = DC (cau a)

=> AD la trung truc cua BC (dn)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau