Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 \(\Delta\) \(AMD\) và \(CMB\) có:
\(AM=CM\) (vì M là trung điểm của \(AC\))
\(\widehat{AMD}=\widehat{CMB}\) (vì 2 góc đối đỉnh)
\(MD=MB\left(gt\right)\)
=> \(\Delta AMD=\Delta CMB\left(c-g-c\right)\)
=> \(AD=BC\) (2 cạnh tương ứng).
b) Xét 2 \(\Delta\) \(BMA\) và \(DMC\) có:
\(BM=DM\left(gt\right)\)
\(\widehat{BMA}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MA=MC\) (vì M là trung điểm của \(AC\))
=> \(\Delta BMA=\Delta DMC\left(c-g-c\right)\)
=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng).
Mà \(\widehat{BAM}=90^0\left(gt\right)\)
=> \(\widehat{DCM}=90^0.\)
=> \(CD\perp MC\)
Hay \(CD\perp AC.\)
c) Theo câu b) ta có \(\Delta BMA=\Delta DMC.\)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD\)
Hay \(AB\) // \(CN.\)
Có:
\(BN\) // \(AC\left(gt\right)\)
\(AB\) // \(CN\left(cmt\right)\)
=> \(AB=CN\) (tính chất đoạn chắn).
Xét 2 \(\Delta\) vuông \(ABM\) và \(CNM\) có:
\(\widehat{BAM}=\widehat{NCM}=90^0\)
\(AB=CN\left(cmt\right)\)
\(AM=CM\) (như ở trên)
=> \(\Delta ABM=\Delta CNM\) (2 cạnh góc vuông tương ứng bằng nhau) (đpcm).
Chúc bạn học tốt!
Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
a: Xét tứ giác ABCD có
M là trug điểm chung của AC và BD
nên ABCD là hình bình hành
=>DC//AB và DC=AB
và AD=BC; AD//BC
b: CD//AB
AB vuông góc với AC
Do đo: CD vuông góc với CA
c:
Xét tứ giác ABNC có
AB//NC
AC//BN
Do đó: ABNC là hìnhbình hành
=>CN=AB
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó;ΔABM=ΔCNM
a) Xét \(\Delta ABC\) vuông tại A
\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{}\Rightarrow AB=6cm\)
b) Xét \(\Delta ABM\) và \(\Delta CDM\) có:
\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)
\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)
c) Có : BC + DC > BD
mà BM = 2 BD ; DC = AB
\(\Rightarrow\) DC + BC > 2BM