K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

ban len mang di , nam nay mk moi len lop 6 

chuc ban hoc tot ^-^

3 tháng 8 2017

hình như sai đề thì phải. Phần A đó, cuối cùng phải là 47.49 chứ

1 tháng 2 2017

\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c=\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)

Áp dụng TC DTSBN ta có :

\(\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{\frac{2}{1}-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)

=> a = 60 ; b = 45 ; c = 40

28 tháng 9 2016

Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)

\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)

\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)

\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)

\(=\frac{1}{2014}.\frac{2015}{2}\)

\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2

=>\(A< \frac{-1}{2}\)hay A<B

21 tháng 10 2016

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

=\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

22 tháng 8 2016

\(\frac{2008}{2009};\frac{20}{19}\)

\(1-\frac{2008}{2009}=\frac{1}{2009}\)

\(1-\frac{20}{19}=\frac{-1}{19}=\frac{1}{19}\)

Vì 19 < 2009 Nên \(\frac{1}{2009}< \frac{1}{19}\)

Vậy \(\frac{2008}{2009}>\frac{20}{19}\)

 

24 tháng 6 2017

Vế trái:\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

=\(\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

=\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

=\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)=Vế phải

24 tháng 6 2017

\(\frac{ }{ }\)NGU VCC

29 tháng 8 2017

A=\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

A=\(1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

BC chịu thua

23 tháng 7 2016

Bài này dùng công thức đem ra so sánh là ra ngay ấy mà.

Vì a<0,b>0 nên phân số \(\frac{a}{b}\)là phân số âm.

Với phân số âm thì khi thêm cùng 1 số vào cả tử và mẫu thì phân số mới sẽ nhỏ hơn phân số cũ.

\(=>\frac{a}{b}>\frac{a+2012}{b+2012}\)

Chúc em học tốt^^

28 tháng 2 2019

Theo đề: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2019}{90}\)

Khai triển:

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(=\frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}\)

\(=\frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+3=\frac{2019}{90}\)

Làm nốt nhé :3