Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vế trái:\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
=\(\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
=\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)=Vế phải
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}\)
Vậy \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)
\(\Rightarrow A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)\(\left(dpcm\right)\)
Bài này lớp 6 mik kiểm tra chất lượng đầu năm nè
ak xin lỗi mk ghi lộn đề , đề đúng là:
Chứng minh rằng: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Các bạn giúp mk với mk cần gấp thank you!!!
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
=\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)
\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)
\(=\frac{1}{2014}.\frac{2015}{2}\)
\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2
=>\(A< \frac{-1}{2}\)hay A<B
Theo đầu bài ta có:
\(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{2450}\)
\(\Leftrightarrow A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{49\cdot50}\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(\Leftrightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(\Leftrightarrow A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=B\)
\(\Rightarrow\frac{A}{B}=1\)
Tổng cộng sẽ mất: 10 phút (D) + 1 phút (A quay lại) + 7 phút (A+C) + 1 phút (A quay lại) + 2 (A+B) = 21 phút
Để giảm thời gian, chúng ta nên tìm cách cho D và C đi với nhau. Nếu họ đi qua cầu đầu tiên, họ sẽ cần một người quay lại đón người khác.
Như thế thì quá mất thời gian. Thử để A đi cùng B và để A đợi ở phía kia cây cầu. Sau khi B quay lại, C và D sẽ qua cầu và đưa đuốc cho A đón B sang.
A và B qua cầu => 2 phút
B quay lại => 2 phút
C và D qua cầu => 10 phút
A quay lại => 1 phút
A và B qua cầu => 2 phút
Tổng là: 2 + 2 + 10 + 1 + 2 = 17 phút
Tính:
b) \(-2.\frac{-38}{21}.\frac{-7}{4}.-\frac{3}{8}\)
= \(\frac{\left(-2\right).\left(-38\right).\left(-7\right).\left(-3\right)}{21.4.8}\)
= \(\frac{-1.-19.1}{1.2.4}=\frac{19}{8}\)
// Học tốt!
ban len mang di , nam nay mk moi len lop 6
chuc ban hoc tot ^-^
hình như sai đề thì phải. Phần A đó, cuối cùng phải là 47.49 chứ