Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)\(\Rightarrow\frac{1}{2}\times a\times\frac{1}{6}=\frac{2}{3}\times b\times\frac{1}{6}=\frac{3}{4}\times c\times\frac{1}{6}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow\frac{a}{12}=5\Rightarrow a=12\times5=60\)
\(\Rightarrow\frac{b}{9}=5\Rightarrow b=9\times5=45\)
\(\Rightarrow\frac{c}{8}=5\Rightarrow c=8\times5=40\)
chúc bạn học tốt!!
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c=\frac{a}{2}=\frac{2b}{3}=\frac{3b}{4}\)
\(\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}=\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow a=5.12=60\); \(b=5.9=45\); \(c=5.8=40\)
Vậy \(a=60\), \(b=45\), \(c=40\)
a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)
\(\Leftrightarrow x+3=7x+35\)
\(\Leftrightarrow-6x=32\)
\(\Leftrightarrow x=-\frac{16}{3}\)
b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)
\(\Leftrightarrow6x-3=-6x-10\)
\(\Leftrightarrow12x=-7\)
\(\Leftrightarrow x=-\frac{7}{12}\)
c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)
\(\Leftrightarrow\left(x+1\right)^2=6^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)
d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)
\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)
\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\)
a) \(\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\)
\(\Rightarrow x=26\)
b)\(\sqrt{\left(x-\frac{1}{3}\right)^2}=7\)
\(\Leftrightarrow x-\frac{1}{3}=7\)
\(\Rightarrow x=\frac{22}{3}\)
c)\(\sqrt{x+1}+5=3\)
làm tương tự nha bạn
P/s tham khảo nha
a) \(\sqrt{x-1}=5\Leftrightarrow\left(\sqrt{x-1}\right)^2=5^2\)
\(\Leftrightarrow\sqrt{x-1}=25\)
\(\Leftrightarrow x=25+1=26\)
b) \(\sqrt{\left(x-\frac{1}{3}^2\right)}=7\). Đơn giản hóa phép tính:
\(\sqrt{\left(x-\frac{1}{3}\right)^2}\)với \(x-\frac{1}{3}\)
\(\Rightarrow x-\frac{1}{3}=7\)
\(x=7+\frac{1}{3}\Leftrightarrow x=\frac{22}{3}\)
c) \(\sqrt{1+x}+5=3\)
\(\sqrt{1-x}=3-5\)
\(\sqrt{1-x}=-2\)
\(\Leftrightarrow1+x=4\)
\(x=4-1=3\)
Mở rộng thêm:
When \(x=3\) the original equation \(\sqrt{1+x}+5=3\) does not hold true.
We will drop \(x=3\) from the solution set. (tự dịch nha! Vì mình sử dụng chương trình để trợ giúp mình giải
Ta có : \(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
Từ \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Vậy nếu \(a^2=bc\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Ta có: \(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{a}=\frac{a-b}{c-a}\)
Từ \(\frac{a+b}{a-b}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Vậy: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(A=\left|x+\frac{1}{2}\right|-1\)
ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)
\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)
\(\Rightarrow A\ge-1\)
\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của A=-1 tại x=-1/2
a, \(\left(\frac{1}{2}-\frac{1}{3}\right)\cdot6^x+6^{x+2}=6^{10}+6^7\)
\(\Leftrightarrow\frac{1}{6}\cdot6^x+6^x\cdot6^2=6^{10}+6^7\)
\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^7\left(6^3+1\right)\)
\(\Leftrightarrow6^{x-1}=6^7\Leftrightarrow x-1=7\)
\(\Leftrightarrow x=8\)
b, \(\left(\frac{1}{2}-\frac{1}{6}\right)\cdot3^{x+4}-4\cdot3^x=3^{16}-4\cdot3^{13}\)
\(\Leftrightarrow\frac{1}{3}\cdot3^{x+4}-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\cdot3^3-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x=3^{13}\Leftrightarrow x=13\)
a. x=8
b. x=13
còn cách tính thì mình quên rồi vì minh học cái này lâu lắm rồi ko nhớ đc.
Theo đề: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2019}{90}\)
Khai triển:
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=\frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}\)
\(=\frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+3=\frac{2019}{90}\)
Làm nốt nhé :3
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c=\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{\frac{2}{1}-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
=> a = 60 ; b = 45 ; c = 40