\(a^2\)=bc (với a\(\ne\)b và a
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Ta có : \(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

    \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

Từ \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Vậy nếu \(a^2=bc\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

1 tháng 10 2017

Ta có: \(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{a}=\frac{a-b}{c-a}\)

Từ \(\frac{a+b}{a-b}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Vậy: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

25 tháng 7 2016

\(a^2=bc\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau; ta có :

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

30 tháng 9 2018

Ta có a2 = bc 

<=> a . a = b .c 

<=> \(\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{b}{a}=\frac{a}{c}\)

Áp dụng t/c dãy tỉ số = nhau , ta có 

\(\frac{b}{a}=\frac{a}{c}=\frac{a+b}{a+c}\)(1)

\(\frac{b}{a}=\frac{a}{c}=\frac{a-b}{c-a}\)(2)

(1),(2) \(\Leftrightarrow\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

15 tháng 3 2020

đẹp trai thì tự làm :) 

hết.

15 tháng 3 2020

Ta có : 

\(a^2=b.c\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

8 tháng 12 2019

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)

\(\Rightarrow2c=\frac{a+b}{ab}\)

\(\Rightarrow2ab=\left(a+b\right)c\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-bc\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

với a,b,c khác 0 và b khác c

đpcm.

27 tháng 12 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=>\(\frac{1}{c}=\frac{a+b}{2ab}\)

=> 2ab = c(a+b)

=> ab+ab = ac+bc

=> ab - bc = ac - ab

=> b(a-c) = a(c-b)

=> \(\frac{a}{b}=\frac{a-b}{c-b}\left(đpcm\right)\)

27 tháng 12 2020

Ta có :\(\frac{a}{b}=\frac{b}{c}\)

=> \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{a}{b}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\left(\text{đpcm}\right)\)

27 tháng 12 2020

Cho xem đáp án nhé