Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)
\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)
+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z
+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z
b/
\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)
=> m=y
+
cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha
a, b cùng dấu thì a/b > 0 ..dễ hiểu thôi nếu cả a, b đều dương thì a/d dĩ nhiên dương, nếu cả a,b đều âm thì a/b cũng dương vì -a/-b = a/b (nhân hai vế với trừ 1)
a, b khác dấu thì a/b luôn âm nên a/b < 0
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
Đúng 8
thien ty tfboys 08/06/2015 lúc 14:52
Ta có :x<y hay a/m <b/m=>a<b
So sánh x,y,z ta chuyển chúng cùng mau :2m
x=a/m =2a/2m va y=b/m =2b/2m va z=a+b/2m
Ma a<b
Suy ra :a+a<b +a
Hay 2a <a+b
Suy ra x<z (1)
Ma :a<b
Suy ra :a+b<b+b
Hay a+b ,2b
suy ra z < y (2)
Từ (1) và (2) ,kết luận :x < z < y
Vì a<0 ; b > 0 => \(\frac{a}{b}<0\) (1)
và \(\frac{a+2012}{a+2012}=1\)mà 1 > 0 (2)
Từ (1) và (2)
=> \(\frac{a}{b}<\frac{a+2012}{a+2012}\)
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
Ban tham khao :Câu hỏi của Nguyễn Phùng Tiến Đạt - Toán lớp 7 - Học toán với OnlineMath
\(\frac{a}{b}=\frac{-1,2}{3,2}\Rightarrow\frac{b}{8}=\frac{a}{-3}=\frac{b-a}{8+3}=\frac{1,94}{11}=\frac{97}{550}\)
\(\Rightarrow a=\frac{97}{550}\cdot\left(-3\right)=-\frac{291}{550}\)
Bài này dùng công thức đem ra so sánh là ra ngay ấy mà.
Vì a<0,b>0 nên phân số \(\frac{a}{b}\)là phân số âm.
Với phân số âm thì khi thêm cùng 1 số vào cả tử và mẫu thì phân số mới sẽ nhỏ hơn phân số cũ.
\(=>\frac{a}{b}>\frac{a+2012}{b+2012}\)
Chúc em học tốt^^