Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) TH1: Nếu x + y + t + z ≠ 0
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{y+z+t+x+z+t+x+y+t+x+y+z}=\frac{1}{3}\)
=> 3x = y + z + t => 4x = x + y + z + t (1)
3y = x + z + t 4y = x + y + z + t (2)
3z = x + y + t 4z = x + y + z + t (3)
3t = x + y + z 4t = x + y + z + t (4)
Từ (1)(2)(3)(4) => x = y = z = t
\(\Rightarrow\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=1+1+1+1=4\)
+) TH2: Nếu x + y + z + t = 0
=> x + y = -(z + t)
y + z = -(x + t)
t + z = -(x + y)
t + x = -(y + z)
\(\Rightarrow\frac{x+y}{z+t}=\frac{y+z}{t+x}=\frac{z+t}{x+y}=\frac{t+x}{y+z}=-1\)
\(\Rightarrow\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
KL:...
* Nếu x = y = z = t; vẫn thỏa gt: x/(y+z+t) = y/(x+z+t) = z/(y+x+t) = t(y+z+x) = 1/3
=> P = 2x/2x + 2x/2x + 2x/2x + 2x/2x = 4
* Nếu có ít nhất 2 số khác nhau, giả sử x # y. tính chất tỉ lệ thức:
x/(y+z+t) = y/(x+z+t) = (x-y) /(y+z+t -x-z-t) = (x-y)/(y-x) = -1
=> x = -(y+z+t) => x+y+z+t = 0
=>
{ x+y = -(z+t) ---- { (x+y)/(z+t) = -1
{ y+z = -(t+x) => { (y+z)/(t+x) = -1
{ z+t = -(x+y) ---- { (z+t)/(x+y) = -1
{ t+x = -(z+y) ---- { (t+x)/(z+y) = -1
=> P = -1 -1 -1 -1 = -4
~~~~~~~~~~~~~~~~~
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{y+x+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3x+3y+3z+3t}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow3x=y+z+t\)
\(3y=x+z+t\)
\(3z=x+y+t\)
\(3t=x+y+z\)
\(\Rightarrow x=y=z=t\)
Ta có:
\(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
\(P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}\)
\(P=1+1+1+1=4\)