K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

Áp dụng bất đẳng thức Co-si cho hai số không âm ta có: 

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{zx}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)

Dấu "=" <=> x = y = z. (đpcm)

2 tháng 7 2021
Câu trả lời bằng hình

Bài tập Tất cả

29 tháng 6 2015

Áp dụng BĐT cô-si cho 2 số dương ta có:

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu"=" xảy ra <=>x=y y=z z=x=>x=y=z

=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=8xyz\Leftrightarrow x=y=z\)(ĐPCM)
 

19 tháng 9 2019

Áp dụng BĐT Cauchy cho 2 số không âm, ta được:

\(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow x+y\ge2\sqrt{xy}\)

\(\frac{y+z}{2}\ge\sqrt{yz}\Rightarrow y+z\ge2\sqrt{yz}\)

\(\frac{x+z}{2}\ge\sqrt{xz}\Rightarrow x+z\ge2\sqrt{xz}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)(Vì x,y,z > 0)

23 tháng 9 2018

Từ x+y+z=3 ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

Nhân chéo ta có:

\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)

\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)

\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)

\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)

Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0

Với x+z=0 ta đc y=3

Với y+z=0 ta đc x=3

Với x+y=0 ta đc z=3

Từ đó suy ra đccm

8 tháng 7 2018

Áp dụng BĐT Cosi cho 3 số x,y,z dương ta có:

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx}\)

Nhân các BĐT vế theo vế ta được:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu "=" xảy ra khi x = y = z

<=> x-y=y-z=z-x=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>x2+y2+z2-xy-yz-zx=0

<=>(x+y+z)(x2+y2+z2-xy-yz-zx)=0 (vì x,y,z>0 nên x+y+z>0)

<=>x3+y3+z3-3xyz=0

<=>x3+y3+z3=3xyz (đpcm)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

19 tháng 9 2019

Áp dụng BĐT Cauchy cho 3 số dương, ta được:

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\Rightarrow\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\)\(+\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\)

\(+\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}.3=\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(đpcm\right)\)

23 tháng 2 2019

\(taco:\)

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)

\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{2}\ge3\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=\frac{3}{2}\)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge3\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=\frac{3}{2}\)

\(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{3}{2}+\frac{3}{2}+\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(dpcm\right)\)

^^

23 tháng 2 2019

Mình giải lại bài này cho đầy đủ hơn nhé: (nãy chỉ là hướng dẫn thôi)

Ta sẽ c/m: \(\frac{1}{x^2+x}\ge-\frac{3}{4}x+\frac{5}{4}\) (1).Thật vậy,xét hiệu hai vế,ta có:

\(VT-VP=\frac{\left(3x+4\right)\left(x-1\right)^2}{4\left(x^2+x\right)}\ge0\)

Suy ra \(VT\ge VP\).Vậy (1) đúng.

Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:

\(VT\ge-\frac{3}{4}\left(x+y+z\right)+\frac{5}{4}.3=\frac{3}{2}^{\left(đpcm\right)}\)