K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

Ta có :

x - y - z = 0 nên x - z = y ; y - x = -z ; z + y = x

Suy ra : B = \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(\Rightarrow B=\frac{y}{z}.\frac{-z}{y}.\frac{x}{z}=-1\)

11 tháng 1 2018

+, Nếu x+y+z=0 => B = x+y/y. y+z/z . z+x/x = (-z/y).(-x/z).(-y/x) = -xyz/xyz = -1

+, Nếu x+y+z khác o thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có : y+z-x/x = z+x-y/y = x+y-z/z = y+z-x+z+x-y+x+y-z/x+y+z = 1

=> y+z-x=x ; z+X-y=y ; x+y-z=z

=> x=y=z

=> B = (1+1).(1+1).(1+!) = 8

Vậy .............

Tk mk nha

11 tháng 1 2018

ADTCDTSBN

\(\frac{y+z-x}{x}\)=\(\frac{z+x-y}{y}\)=\(\frac{x+y-z}{z}\)=\(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)=1

\(\Rightarrow\)\(\hept{\begin{cases}y=-z\\z=-x\\x=-y\end{cases}}\)

Khi đó B=\(\left(1+\frac{-y}{y}\right)\)\(\left(1+\frac{-z}{z}\right)\)\(\left(1+\frac{-x}{x}\right)\)=0

Vậy B=0 ........... hjhjh

8 tháng 3 2016

Bằng -1

Trên luyện toán VIOLYMPIC cũng có

8 tháng 3 2016

Mấy câu này mấy bạn nên thay:

Thay x = 3 , y = 2 , z = 1. (3-2-1=0)

Đoạn sau bấm máy tính: B = (1 - 1/3)(1 - 3/2)(1 - 2/1)

                                        = 1/3

15 tháng 9 2015

\(\text{Ta có: }x-y-z=0\Rightarrow x=y+z\)

                                                  \(y=x-z\) 

                                                  \(z=x-y\)

\(\text{Mặt khác: }A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

                           \(=\left(\frac{x}{x}-\frac{z}{x}\right)\left(\frac{y}{y}-\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\)

                           \(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{y+z}{z}\)

                           \(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{x-y}\)

                           \(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{-\left(y-x\right)}\)

                           \(=-1\)

13 tháng 10 2016

Ta có: x - y - z = 0 \(\Rightarrow\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}\)

\(A=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(A=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\)