K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

ta co : a+b+c=bc+ac+ab/abc

                    =a+b+c=bc+ac+ab     (vi abc=1)

    ta co : (a-1).(b-1).(c-1)

              =(ab-a-b+1).(c-1)

               =abc-ab-ac+a-bc+b+c-1

              =(abc-1)+(a+b+c)-(ab+ac+bc)

              =(1-1)+(bc+ac+ab)-(ab+ac+bc)

              =0

do (a-1).(b-1).(c-1)=0            (cmt)

=>a=b=c=1   

thay vao p

=>p=(1^19-1).(1^5-1).(1^1890-1)

      =(1-1).(1-1).(1-1)

       0

Tớ nhầm a,b,c với x,y,z nhe

thông cảm bệnh nghề nghiệp

p=0 là đúng đấy 

nhớ cho tớ nhé 

hí hí hí hí hí ................

27 tháng 4 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}\)\(=\frac{-\left(x+y+z\right)}{x+y+z}\)

Nếu   \(x+y+z=0\)thì   \(\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}\)

\(=\frac{-z}{x}.\frac{-x}{y}.\frac{-y}{z}=-1\)

Nếu  \(x+y+z\ne0\)thì   \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=-1\)

suy ra:   \(\frac{x-y-z}{x}=-1\)            \(\Rightarrow\)       \(x-y-z=-x\)          \(\Rightarrow\)     \(y+z=2x\)

             \(\frac{-x+y-z}{y}=-1\)                     \(-x+y-z=-y\)                         \(x+z=2y\)

             \(\frac{-x-y+z}{z}=-1\)                    \(-x-y+z=-z\)                         \(x+y=2z\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{x+z}{z}\)

\(=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=8\)

13 tháng 1 2021

Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)

\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\) 

Mà x+y+z=xyz

=> P+2=3=>P=1

Vậy P=1

20 tháng 1 2018

     \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow\)\(x+y+z=\frac{xy+yz+xz}{xyz}\)

\(\Leftrightarrow\)\(x+y+z=xy+yz+xz\)   (vì    xyz = 1 )

Ta có:      \(\left(xyz-1\right)+\left(x+y+z\right)-\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\)\(\left(xyz-xy\right)-\left(xz-x\right)-\left(yz-y\right)+\left(z-1\right)=0\)

\(\Leftrightarrow\)\(xy\left(z-1\right)-x\left(z-1\right)-y\left(z-1\right)+\left(z-1\right)=0\)

\(\Leftrightarrow\)\(\left(z-1\right)\left(x-1\right)\left(y-1\right)=0\)    (mk lm hơi tắt, thông cảm)

\(\Leftrightarrow\)  \(x-1=0\)            \(\Leftrightarrow\)      \(x=1\)

hoặc    \(y-1=0\)             \(\Leftrightarrow\)     \(y=1\)

hoặc    \(z-1=0\)             \(\Leftrightarrow\)     \(z=1\)

Vậy....

16 tháng 6 2018

Ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3=0^3\)

\(\Leftrightarrow\)\(\left(\frac{1}{x}\right)^3+\left(\frac{1}{y}\right)^3+\left(\frac{1}{z}\right)^3+3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)=0\)

\(\Leftrightarrow\)\(\frac{1^3}{x^3}+\frac{1^3}{y^3}+\frac{1^3}{z^3}=-3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)\)

Lại có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\\\frac{1}{y}+\frac{1}{z}=\frac{-1}{x}\\\frac{1}{z}+\frac{1}{x}=\frac{-1}{y}\end{cases}}\)

\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(-3\right).\frac{-1}{z}.\frac{-1}{x}.\frac{-1}{y}\)

\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\) ( đpcm ) 

Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Chúc bạn học tốt ~ 

16 tháng 6 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{-3}{x^2y}-\frac{3}{xy^2}=\frac{-3}{xy}.\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{-3}{xy}.-\frac{1}{z}=\frac{3}{xyz}\)

28 tháng 3 2016

Dễ dàng chứng minh được với mọi  \(x,y>0\) thì ta luôn có:

\(x^3+y^3\ge xy\left(x+y\right)\)  \(\left(\text{*}\right)\)

Thật vậy, xét hiệu  \(x^3+y^3-xy\left(x+y\right)=x^3-x^2y+-xy^2+y^3=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)

\(x^3+y^3-xy\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\)  (vì  \(\left(x-y\right)^2\ge0\)  với mọi  \(x,y\)  và  \(x+y>0\))

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x-y=0\)  \(\Leftrightarrow\)  \(x=y\)

Vậy,  bất đẳng thức \(\left(\text{*}\right)\)  luôn đúng với mọi  \(x,y>0\)

Do đó, từ  \(\left(\text{*}\right)\)  ta suy ra:

\(x^3+y^3+xyz\ge xy\left(x+y\right)+xyz\)  (do  \(x,y,z>0\))

\(\Leftrightarrow\)  \(x^3+y^3+xyz\ge xy\left(x+y+z\right)\)

\(\Leftrightarrow\)  \(x^3+y^3+1\ge xy\left(x+y+z\right)\)  (do  \(xyz=1\))

Khi đó, vì hai vế  của bđt trên cùng dấu nên ta lấy nghịch đảo hai vế và đổi chiều bất đẳng thức, tức là:

\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)   \(\left(1\right)\)

\(\Leftrightarrow\)  \(\frac{1}{x^3+y^3+1}\le\frac{xyz}{xy\left(x+y+z\right)}\)  (do  \(xyz=1\))

\(\Leftrightarrow\)  \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)

Hoàn toàn tương tự với vòng hoán vị  \(x\)  \(\rightarrow\)  \(y\)  \(\rightarrow\)  \(z\), ta cũng chứng minh được:

\(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)  \(\left(2\right)\)  và  \(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\)  \(\left(3\right)\)

Cộng từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được:

\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z=1\)

5 tháng 3 2020

cậu tự mà làm đi sao cứ bắt người khác làm hộ vậy

26 tháng 12 2020

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)

CM : \(x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2\)

CM: \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Rightarrow\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+x^3z^3+y^3z^3\right)}{3xyz}=\frac{3x^2y^2z^2}{xyz}=xyz\)