Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)
\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\)
Mà x+y+z=xyz
=> P+2=3=>P=1
Vậy P=1
+ Nếu x + y + z = 0 => x + y = -z; y + z = -x; x + z = -y
A = (1 + y/x)(1 + z/y)(1 + x/z)
A = (x+y)/x . (y+z)/y . (x+z)/z
A = -z/x . (-x)/y . (-y)/z = -1
+ Nếu x + y + z khác 0
x-y-z/x = -x+y-z/y = -x-y+z/z
<=> 1 - (y+z)/x = 1 - (x+z)/y = 1 - (x+y)/z
<=> y+z/x = x+z/y = x+y/z
Áp dụng t/c của dãy tỉ số = nhau ta có:
y+z/x = x+z/y = x+y/z = 2(x+y+z)/x+y+z = 2
A = (x+y)/x . (y+z)/y . (x+z)/z = 8
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)
CM : \(x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2\)
CM: \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)
\(\Rightarrow\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+x^3z^3+y^3z^3\right)}{3xyz}=\frac{3x^2y^2z^2}{xyz}=xyz\)
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)
A=6
\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác
=> x=y=z
=> A=6
\(\frac{x-y-z}{x}=\frac{y-x-z}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-x-z+z-x-y}{x+y+z}=\frac{-x-y-z}{x+y+z}=-1\)
\(\rightarrow\begin{cases}x-y-z=-x\\y-x-z=-y\\z-x-y=-z\end{cases}\)
\(\leftrightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)
\(A=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=8\)
Xét: \(x+y+z=xyz\Leftrightarrow\frac{x+y+z}{xyz}=1\)
\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Mặt khác:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)<=>\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\left(\sqrt{3}\right)^2\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.1=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
Khi đó ta chứng minh được :
\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)
Mà \(x+y+z=0\)
\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)
Từ đó ta suy ra :
\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)
\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)
\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)
\(=xyz\)( ĐPCM )
Hên xui thôi
Ta có :
\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
Do x + y + z = 0 => x+y = -z ; y+z = -x ; z+x = -y
\(\Rightarrow A=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{\left(-1\right).xyz}{xyz}=-1\)
Có: \(x+y+z=0\)
CM được: \(x^3+y^3+z^3=3xyz\)
Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow xy+xz+yz=0\)
\(\Leftrightarrow\left(xy+xz+yz\right)^3=0\)
\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3\left(xy+yz\right)\left(xz+yz\right)\left(xz+xy\right)=0\)(từ CT: (a+b+c)^3=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)(Thế x+y=-z ; y+z=-x và x+z=-y)
\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3=3x^2y^2z^2\)
\(\Leftrightarrow2\left(x^3y^3+x^3z^3+y^3z^3\right)=6x^2y^2z^2\)(1)
Có: \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^6+y^6+z^6+2\left(x^3y^3+x^3z^3+y^3z^3\right)=9x^2y^2z^2\)(2)
Từ (1) và (2):
Có: \(x^6+y^6+z^6=3x^2y^2z^2\)
Cho nên: \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{3x^2y^2z^2}{3xyz}=xyz\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}\)\(=\frac{-\left(x+y+z\right)}{x+y+z}\)
Nếu \(x+y+z=0\)thì \(\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}\)
\(=\frac{-z}{x}.\frac{-x}{y}.\frac{-y}{z}=-1\)
Nếu \(x+y+z\ne0\)thì \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=-1\)
suy ra: \(\frac{x-y-z}{x}=-1\) \(\Rightarrow\) \(x-y-z=-x\) \(\Rightarrow\) \(y+z=2x\)
\(\frac{-x+y-z}{y}=-1\) \(-x+y-z=-y\) \(x+z=2y\)
\(\frac{-x-y+z}{z}=-1\) \(-x-y+z=-z\) \(x+y=2z\)
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{x+z}{z}\)
\(=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=8\)