Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
Bạn tham khảo:
Cho ba số thực dương x;y;z thoả mãn \(5\left(x y z\right)^2\ge14\left(x^2 y^2 z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24
Từ giả thiết, x+y=100-z\(\leq\)40
Theo BĐT Cô-si: \(3x.3y.z\le\left(\dfrac{3x+3y+z}{3}\right)^3=\left(\dfrac{2x+2y+100}{3}\right)^3\le\left(\dfrac{2.40+100}{3}\right)^3=216000\Rightarrow xyz\le24000\)
Dấu "=" xảy ra khi x=y=20 và z=60
Áp dụng bđt Cô-si cho 2 số dương, ta có
\(A=xyz\le\frac{\left(x+y\right)^2z}{4}=\frac{\left(x+y\right)\left(100-z\right)z}{4}\) (Vì\(x+y+z=100\)
\(A\le\frac{\left(x+y\right)3\left(100-z\right)2z}{24}\le\frac{\left(x+y\right)\left(300-3z+2z\right)^2}{24}=\frac{\left(x+y\right)\left(300-z\right)^2}{96}\)
Mà \(z\ge60\) \(x+y+z=100\Rightarrow x+y\le40\)
\(\Rightarrow A\le\frac{40\left(300-60\right)^2}{96}=24000\)
Dấu '=' xảy ra khi \(z=60;x=y=40\)
dòng cuối mình viết lộn nha \(x=y=20\) chứ