K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

Bài này à

12 tháng 2 2019

Gọi thương của phép chia là a thì ta có:

\(x^3+y^3+z^3=a\left(xyz\right)^2\)

Không mất tính tổng quát ta giả sử: \(x\ge y\ge z\)

Dễ thấy \(y^3+z^3⋮x^2\)

\(\Rightarrow y^3+z^3\ge x^2\left(1\right)\)

Ta lại có:

\(3x^3\ge x^3+y^3+z^3=a\left(xyz\right)^2\)

\(\Leftrightarrow3x\ge a\left(yz\right)^2\)

\(\Leftrightarrow9x^2\ge a^2y^4z^4\left(2\right)\)

Từ (1) và (2) suy ra

\(18y^3\ge9\left(y^3+z^3\right)\ge a^2y^4z^4\)

\(\Leftrightarrow z^5\le a^2yz^4\le18\)

\(\Leftrightarrow0< z\le1\)

\(\Leftrightarrow z=1\)

\(\Rightarrow a^2\le a^2y\le18\)

\(\Leftrightarrow1\le a\le4\)

Tự nhiên làm biếng quá thôi còn lại tự làm nốt nha bé.

28 tháng 11 2016

Ta có

\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)

\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)

Tương tự ta có

\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)

\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)

Cộng vế theo vế ta được

\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)

\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)

Dấu = xảy ra khi x = y = z = 2

28 tháng 11 2016

=720vix+y3=56vayx=720

4 tháng 2 2017

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!

26 tháng 4 2020

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

26 tháng 4 2020

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)