Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\sum\frac{x}{3-yz}\le\sum\frac{2x}{6-\left(y^2+z^2\right)}=\sum\frac{2x}{x^2+x^2+y^2+z^2}\le\sum\frac{x^2+1}{x^2+1+2}\)
\(VT\le\frac{1}{4}\sum\left(\frac{x^2+1}{x^2+1}+\frac{x^2+1}{2}\right)=\frac{1}{4}\left(3+\frac{x^2+y^2+z^2+3}{2}\right)=\frac{3}{2}\)
Đề bài sai bạn: ví dụ cho \(y=z=0\); \(x=4\) thì \(\frac{4}{6}\le\frac{1}{3}\) (vô lý)
Áp dụng Bđt Cosi
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
Ta có:
\(\frac{2}{xy+yz+zx}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\ge\frac{2}{\frac{1}{3}}+\frac{8}{\left(x+y+z\right)^2}\ge14\) (Đpcm)
Dấu "=" khi \(x=y=z=\frac{1}{3}\)
Lời giải:
Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$
Ta sẽ chứng minh BĐT phụ sau:
$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$
$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$
Hoàn toàn tương tự:
$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$
$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$
Cộng theo vế và thu gọn:
$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$
Hay $P\geq \frac{3\sqrt{3}}{2}$
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$
Lời giải:
Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$
Ta sẽ chứng minh BĐT phụ sau:
$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$
$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$
Hoàn toàn tương tự:
$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$
$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$
Cộng theo vế và thu gọn:
$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$
Hay $P\geq \frac{3\sqrt{3}}{2}$
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$
Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)
Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)
Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)
Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng
Như vậy (3),(4) đúng => (2) đúng
Từ đó suy ra \(T\ge\frac{4}{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
áp dụng bđt cosi có:
\(\left\{{}\begin{matrix}x^3+y^2\ge2xy\sqrt{x}\\y^3+z^2\ge2yz\sqrt{y}\\z^3+x^2\ge2zx\sqrt{z}\end{matrix}\right.\)
\(\Rightarrow VT\le\frac{2\sqrt{x}}{2xy\sqrt{x}}+\frac{2\sqrt{y}}{2yz\sqrt{y}}+\frac{2\sqrt{z}}{2zx\sqrt{z}}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
Ta cần cm: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Rightarrow xy+yz+zx\ge x^2+y^2+z^2\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\le0\)(sai)
=> đề sai
\(VT=\sum\frac{2}{x^2+y^2}=\sum\frac{x^2+y^2+z^2}{x^2+y^2}=\sum\left(1+\frac{z^2}{x^2+y^2}\right)\ge\sum\left(1+\frac{z^2}{2xy}\right)=3+\frac{x^3+y^3+z^3}{2xyz}\)
Vậy đẳng thức đã được chứng minh . Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{3}{2}}\)