K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$

Ta sẽ chứng minh BĐT phụ sau:

$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$

$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$

Hoàn toàn tương tự:

$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$

$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$

Cộng theo vế và thu gọn:

$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$

Hay $P\geq \frac{3\sqrt{3}}{2}$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$

Ta sẽ chứng minh BĐT phụ sau:

$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$

$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$

Hoàn toàn tương tự:

$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$

$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$

Cộng theo vế và thu gọn:

$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$

Hay $P\geq \frac{3\sqrt{3}}{2}$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$

26 tháng 7 2019

ấy chết,sửa: \(\sqrt{xyz}\) thành \(\sqrt[3]{xyz}\). Em cứ nhầm cái này

26 tháng 7 2019

Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.

Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)

Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)

\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)

\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))

Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.

Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.

19 tháng 8 2020

Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)

Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)

Áp dụng Bất Đẳng Thức Cauchy ta có

\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)

\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)

Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)

\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)

Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}=\frac{\left(\frac{x}{y}\right)^2}{\frac{1}{y}}+\frac{\left(\frac{y}{z}\right)^2}{\frac{1}{z}}+\frac{\left(\frac{z}{x}\right)^2}{\frac{1}{x}}\geq \frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)

Giờ ta cần chỉ ra \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Thật vậy, do $xyz=1$ nên tồn tại các số dương \(a,b,c\) sao cho:

\((x,y,z)=\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)\)

Bài toán tương đương với

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Áp dụng BĐT Am-Gm ta có:

\((ab)^3+(ab)^3+(bc)^3\geq 3b^3ca^2\)

Thực hiện tương tự và cộng theo vế, suy ra:

\(3[(ab)^3+(bc)^3+(ca)^3]\geq 3(a^3bc^2+b^3ca^2+c^3ab^2)\)

\(\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z=1\)

23 tháng 10 2017

@Ace Legona

16 tháng 8 2019

Áp dụng bất đẳng thức Cauchy :

\(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^2}{2x}+\frac{x+z}{4}\ge3\sqrt[3]{\frac{x^4\cdot y^2\cdot\left(x+z\right)}{y^2\cdot\left(x+z\right)\cdot2x\cdot4}}=3\sqrt[3]{\frac{x^3}{8}}=\frac{3x}{2}\)

Tương tự ta cũng có :

\(\frac{y^4}{z^2\left(x+y\right)}+\frac{z^2}{2y}+\frac{x+y}{4}\ge\frac{3y}{2}\)

\(\frac{z^4}{x^2\left(y+z\right)}+\frac{x^2}{2z}+\frac{y+z}{4}\ge\frac{3z}{2}\)

Cộng theo vế ta được :

\(VT+\left(\frac{y^2}{2x}+\frac{z^2}{2y}+\frac{x^2}{2z}\right)+\frac{2\left(x+y+z\right)}{4}\ge\frac{3x}{2}+\frac{3y}{2}+\frac{3z}{2}\)

\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow VT+\frac{1}{2}\cdot\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow VT+\frac{1}{2}\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow VT\ge\frac{x+y+z}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

16 tháng 8 2019

Hình như bài t bị ngược cmn dấu rồi thì phải :P

19 tháng 8 2019

2.

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1+9^2\right)\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow82\cdot\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow\sqrt{82}\cdot\sqrt{x^2+\frac{1}{x^2}}\ge x+\frac{9}{x}\)

Tương tự ta cũng có :

\(\sqrt{82}\cdot\sqrt{y^2+\frac{1}{y^2}}\ge y+\frac{9}{y}\)

\(\sqrt{82}\cdot\sqrt{z^2+\frac{1}{z^2}}\ge z+\frac{9}{z}\)

Cộng theo vế của các bất đẳng thức ta được :

\(\sqrt{82}\cdot\left(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\right)\ge x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)

\(\Leftrightarrow\sqrt{82}\cdot P\ge x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}\)(1)

Mặt khác áp dụng bất đẳng thức Cauchy ta có :

\(x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}=81x+\frac{9}{x}+81y+\frac{9}{y}+81z+\frac{9}{z}-80x-80y-80z\)

\(\ge2\sqrt{\frac{81x\cdot9}{x}}+2\sqrt{\frac{81y\cdot9}{y}}+2\sqrt{\frac{81z\cdot9}{z}}-80\left(x+y+z\right)\)

\(\ge2\sqrt{729}+2\sqrt{729}+2\sqrt{729}-80\cdot1\)

\(=82\) (2)

Từ (1) và (2) suy ra \(\sqrt{82}\cdot P\ge82\)

\(\Leftrightarrow P\ge\sqrt{82}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

19 tháng 8 2019

1.

Áp dụng bất đẳng thức Cauchy :

\(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)

\(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)

\(=9a+\frac{1}{a}+9b+\frac{1}{b}+9c+\frac{1}{c}-8a-8b-8c\)

\(\ge2\sqrt{\frac{9a}{a}}+2\sqrt{\frac{9b}{b}}+2\sqrt{\frac{9c}{c}}-8\left(a+b+c\right)\)

\(\ge3\cdot2\sqrt{9}-8=10\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

Lời giải:

BĐT \(\Leftrightarrow (9+x^2y^2+y^2z^2+z^2x^2)(xy+yz+xz)\geq 36xyz(*)\)

Thật vậy, áp dụng BĐT AM-GM:

\(9+x^2y^2+y^2z^2+z^2x^2=1+1+...+1+x^2y^2+y^2z^2+z^2x^2\geq 12\sqrt[12]{x^4y^4z^4}\)

\(xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}\)

Nhân theo vế ta có BĐT $(*)$ luôn đúng

Do đó ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

BĐT sai với $(x,y,z)=(4,6,1)$

7 tháng 2 2020

BĐ cũng sai với \(\left(x;y;z\right)=\left(1;5;3\right)\)