Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
quy đồng BĐT \(\frac{\left(xy-1\right)\left(x-y\right)^2}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\forall xy\ge1\)
Ta có: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{xy}\right)\ge0\)
\(\Leftrightarrow\frac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)\ge0\)
\(\Leftrightarrow\left(y-x\right)\left(x+xy^2-y-x^2y\right)\ge0\)
\(\Leftrightarrow\left(y-x\right)^2\left(xy-1\right)\ge0\)(đúng với mọi x,y>=1)
Cái này biến đổi tương đương nhé, t có mỗi cách đó !
ta có BĐT cần chứng minh
\(\Leftrightarrow\left(1+xy\right)\left(1+x^2\right)+\left(1+xy\right)\left(1+y^2\right)\ge2\left(1+y^2\right)\left(1+x^2\right)\)
\(\Leftrightarrow1+x^2+xy+x^3y+1+y^2+xy+y^3\ge2\left(1+x^2+y^2+x^2y^2\right)\)
\(\Leftrightarrow2xy+x^3y+xy^3-x^2-y^2-2x^2y^2\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)
bđt này luôn đúng với \(x,y\ge1\)
dấu = xảy ra <=> x=y >=1
^_^
chọn của vũ tiền châu nhé
nhớ đêý
cảm ơn
t i c k nhé
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
<=> \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\ge0\)
<=> \(\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)
Rồi bạn quy đồng mẫu lên và phân tích tử và mẫu thành nhân tử => chứng minh tử \(\ge\) 0 và mẫu >0 nhé
=> ĐPCM
\(\Leftrightarrow\frac{x^2+y^2+2x+2y+2}{\left(1+x+y+xy\right)^2}\ge\frac{1}{1+xy}\)
\(\Leftrightarrow\left(1+xy\right)\left[\left(x-y\right)^2+2\left(xy+x+y+1\right)\right]\ge\left(1+x+y+xy\right)^2\)
\(\Leftrightarrow\left(1+xy\right)\left(x-y\right)^2+\left(1+x+y+xy\right)\left(2+2xy-1-x-y-xy\right)\ge0\)
\(\Leftrightarrow\left(1+xy\right)\left(x-y\right)^2+\left(xy+1+x+y\right)\left(xy+1-x-y\right)\ge0\)
\(\Leftrightarrow\left(1+xy\right)\left(x-y\right)^2+\left(xy+1\right)^2-\left(x+y\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+xy\left(x-y\right)^2+x^2y^2+1-x^2-y^2\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\) (luôn đúng)
giúp em liền
Ta có: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\) \(\left(\frac{1}{x^2+1}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-z\right)}{\left(1+x^2\right)\left(1+y^2\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-z\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(1+Xy\right)}\ge0\)
=> đúng
Tương tự ta được: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+Xy}\ge\frac{2}{1+xyz}\) (vì z\(\ge1\) )
\(\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{2}{1+xyz}\)
\(\frac{1}{z^2+1}+\frac{1}{x^2+1}\ge\frac{2}{1+xyz}\)
công vế theo vế \(\Rightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{3}{1+xyz}\)
dấu "=" xảy ra <=> x=y=z=1
ủa mà lạ lắm à nghen em nói em bắt đầu off rồi mà + cách nói ell giống pé châu => ai on nick này z?
ặc :v
\(\Leftrightarrow\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)
\(\Leftrightarrow\frac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
Ok chưa :v
Cảm ơn bạn =)) Thật sự là mình đã làm gần hết nhưng vì vẫn còn đang loay hoay không biết có nên đổi dấu hay không thôi :'(