Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu = xảy ra <=>x=y=1/2
^_^
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
ta có\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)
Áp dụng bất đẳng thức côsin cho 2 số dương , ta có:
\(2\sqrt{xy}\le x+y\le1\Leftrightarrow2xy\le\frac{1}{2}\)
Để A đạt GTNN thì \(\left(x+y\right)^2\)va\(2xy\) phai dat GTLN
\(\Rightarrow A\ge\frac{4}{1}+\frac{1}{2}\Leftrightarrow A\ge\frac{9}{2}\)
\(a=\frac{9}{2}\Leftrightarrow x=y=\frac{1}{2}\)
cac ban tra loi di