K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Rightarrow x^2+2xy+y^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)

25 tháng 12 2019

Ta có vì : x,y > 0

và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Từ đề bài ta có:

\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)

Áp dụng đẳng thức Cô-si:

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Vậy....

đpcm.

22 tháng 2 2020

Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

22 tháng 2 2020

Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.

Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!

3 tháng 7 2019

Xét \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

<=> \(a^2+b^2\ge2ab\) (luôn đúng)

Dấu bằng xảy ra khi a=b

Áp dụng ta có

\(\frac{1}{x+3y}+\frac{1}{y+2z+x}\ge\frac{4}{2\left(x+2y+z\right)}=\frac{2}{x+2y+z}\)

\(\frac{1}{y+3z}+\frac{1}{z+2x+y}\ge\frac{2}{x+y+2z}\)

\(\frac{1}{z+3x}+\frac{1}{x+2y+z}\ge\frac{2}{2x+y+z}\)

Cộng các vế của các bđt trên

=> ĐPCM

Dấu bằng xảy ra khi x=y=z

ta có (x-y)^2>=0

=>x^2+y^2>=2xy

=>x^2+2xy+y^2>=4xy

(x+y)^2>=4xy

(x+y)/xy>=4/(x+y)

1/x+1/y>=4/(x+y)

27 tháng 1 2018

Lớp 8 chưa cần biết Svacxơ làm gì cả.

Bạn chứng minh cái này rồi áp dụng cũng được

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) với \(m;n>0\)

28 tháng 1 2018

Mk hk bt CM \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\). Chính vì vậy nên ms hỏi cách CM Svacxơ cho nhanh....

Giúp mk đk ko???

5 tháng 5 2019

Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\x+z-y=c\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{a+c}{2}\\y=\frac{a+b}{2}\\z=\frac{b+c}{2}\end{cases}}\left(\hept{\begin{cases}a=x+y-z>0\\b=y+z-x>0\\c=x+z-y>0\end{cases}}\right)}\)

Do đó Bđt cần CM có dạng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2}{a+c}+\frac{2}{a+b}+\frac{2}{b+c}\)

Có: \(\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

Tương tự: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)và \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\)

Do đó: Cộng vế theo vế:

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\)

Suy ra:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2}{a+c}+\frac{2}{a+b}+\frac{2}{b+c}\)

Vậy => đpcm

12 tháng 3 2019

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2\Rightarrow xy+yz+zx=0\left(1\right)\)

Đặt xy=a ; yz=b ; xz =c 

=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}\)

Xét \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=a^3+b^3+c^3\)

mà \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc+3abc\)

\(=\left(a+b+c\right)^3-3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)-3abc+3abc\)

\(=\left(a+b+c\right)^3-3abc\left(a+b+c\right)+3\left(a+b\right)c\left(a+b+c\right)+3abc\)

Mà ta có \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

=> \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=3\left(xyz\right)^2\)

=> \(\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}=\frac{3\left(xyz\right)^2}{\left(xyz\right)^3}=\frac{3}{xyz}\left(dpcm\right)\)

Bạn rút gọn vài bước đi nhé :3 mk trình bày ko hay cho lắm :3 nhớ k giùm mk nha :3