K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2021

Lời giải:
$(x+y)(x+z)(y+z)(y+x)=2(z+x)(z+y)$

$\Leftrightarrow (z+x)(z+y)[(x+y)^2-2]=0$

$\Leftrightarrow x+z=0$ hoặc $z+y=0$ hoặc $(x+y)^2=2$

Nếu $z+x=0\Leftrightarrow x=-z$

$z^2=x^2$ không có cơ sở bằng $\frac{x^2+y^2}{2}$

Bạn xem lại đề.

8 tháng 9 2019

toi ko bit lam chi biet lam anh thui

8 tháng 9 2019

Mk cũng khá tốt về Anh nha bạn

7 tháng 7 2023

Phân tích vế trái ta được: 2(x2 + y2 + z2 − (xy + yz + zx)

Phân tích vế phải ta được6(x2 + y2 + z2 − (xy + yz + zx)

VT = VP nên VP - VT=0

 4(x2 + y2 + z2 − (xy + yz + zx)) = 0

2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0

→2((x − y)2 + (y − z)2 + (z − x)2) = 0

→(x − y)2 + (y − z)2 + (z − x)2 = 0

→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0

→x = y = z

11 tháng 2 2021

Áp dụng bđt AM-GM ta có :

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\) (do x+y+z=2) 

Vậy ....

11 tháng 2 2021

Áp dụng bđt Cô-si vào các số x,y,z dương:

\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{y+z}\cdot\dfrac{y+z}{4}}=x\) 

Chứng minh tương tự :\(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\) , \(\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{1}{2}\left(x+y+z\right)\ge x+y+z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{1}{2}\left(x+y+z\right)=1\) 

Dấu bằng xảy ra của cả 2 cách là x=y=z=\(\dfrac{2}{3}\)

12 tháng 9 2019

\(\Leftrightarrow x^2+2xz+2xy+2yz+y^2=2z^2+2yz+2xz+2zx\Leftrightarrow2z^2=x^2+y^2\Leftrightarrow z^2=\frac{x^2+y^2}{2}\)