\(z^2=\frac{x^2+y^2}{2}\) !?!?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

\(\Leftrightarrow x^2+2xz+2xy+2yz+y^2=2z^2+2yz+2xz+2zx\Leftrightarrow2z^2=x^2+y^2\Leftrightarrow z^2=\frac{x^2+y^2}{2}\)

24 tháng 11 2018

Bạn có thể sử dụng BĐT thức Cô-si và xét trường hợp dấu bằng xảy ra nhé bạn !

5 tháng 4 2020

Câu hỏi của Trần Ngọc Tú - Toán lớp 8 - Học toán với OnlineMath

24 tháng 11 2018

Ta có

\(x+y+z+\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}=x+y+z\)

=> \(x+\frac{x^2}{y+z}+y+\frac{y^2}{z+x}+z+\frac{z^2}{y+x}=x+y+z\)

=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+x}=x+y+z\)

=> \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}=1\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

Lời giải:

Xét hiệu:

\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)

\(\ge \frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3\sqrt[3]{\frac{x^2}{y^2}.\frac{y^2}{z^2}.\frac{z^2}{x^2}}-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)

\(=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)

\(=\frac{1}{2}\left[(\frac{x}{y}-1)^2+(\frac{y}{z}-1)^2+(\frac{z}{x}-1)^2\right]\geq 0\)

\(\Rightarrow \frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$

10 tháng 3 2019

có điều kiện j k thế

10 tháng 3 2019

đề vậy thôi, nhưng cám ơn nha. mk biết lm oii