Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
* Chứng minh \(x\vdots 3, y\vdots 3\Rightarrow x^2+y^2\vdots 3(*)\)
Thật vậy \(x\vdots 3; y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\)
* Chứng minh \(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3(**)\)
Tính chất: Số chính phương $x^2$ khi chia cho $3$ dư $0$ hoặc $1$ (để chứng minh điều này, bạn có thể đặt $x=3k,3k+1,3k+2$ và khai triển ta có ngay đpcm)
Áp dụng tính chất trên:
+) Nếu \(x^2\) chia hết cho $3$, $y^2$ chia $3$ dư $1$ \(\rightarrow x^2+y^2\) chia 3 dư 1 (trái giả thiết)
+) Nếu $x^2$ chia 3 dư 1, $y^2$ chia hết cho $3$, thì $x^2+y^2$ chia 3 dư $1$ (trái giả thiết)
+) Nếu $x^2$ chia 3 dư 1, $y^2$ chia 3 dư 1, thì $x^2+y^2$ chia 3 dư $2$ (trái giả thiết)
Do đó $x^2,y^2$ phải cùng chia hết cho $3$. Mà $3$ là số nguyên tố nên \(\Rightarrow x\vdots 3; y\vdots 3\) (đpcm)
Từ \((*) (**): x^2+y^2\vdots 3\Leftrightarrow x\vdots 3; y\vdots 3\)
Ta có đpcm.
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
a/
\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)
\(5x+47y=\left(5x+30y\right)+17y\)
\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)
b/
\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)
Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)