K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2015

Ta có:x+2y chia hết cho 5

=>2(x+2y) chia hết cho 5

=>2x+4y chia hết cho 5

Lại có:5x chia hết cho 5

=>5x-(2x+4y) chia hết cho 5

=>5x-2x-4y chia hết cho 5

=>3x-4y chia hết cho 5

Vậy 3x-4y chia hết cho 5.

30 tháng 10 2020

a/

\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)

\(5x+47y=\left(5x+30y\right)+17y\)

\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)

b/

\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)

Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)

11 tháng 8 2018

\(A=2+2^2+2^3+...+2^{60}\)

    \(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

     \(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)

      \(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy....

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)

    \(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)

     \(=30.\left(1+5^2+...+5^6\right)⋮30\)

11 tháng 8 2018

Bài 1 bạn kia giải rồi 

2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d

=> (6n+15)-(6n+14) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* nên d = 1

=> ƯCLN(2n+5;3n+7) = 1

Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau

3. Nếu x+2y chia hết cho 5

=> 3.(x+2y) chia hết cho 5

=> 3x+6y chia hết cho 5

Mà 10y chia hết cho 5

=> (3x+6y)-10y chia hết cho 5

=> 3x - 4y chia hết cho 5

=> ĐPCM

31 tháng 10 2015

Nếu x+2y chia hết cho 5

=> 3.(x+2y) chia hết cho 5

=> 3x+6y chia hết cho 5

Mà 10y chia hết cho 5

=> (3x+6y)-10y chia hết cho 5

=> 3x-4y chia hết cho 5

Vậy 3x-4y chia hết cho 5

27 tháng 11 2017

Ta có: 2(x+2y)+(3x-4y)=2x+4y+3x-4y=5x chia hết cho 5

Mà : 2(x+2y)chia hết cho 5 (Vì x+2y chia hết cho 5)

Nên: 3x-4y chia hết cho 5

    chính xác rùi đó!