K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

a/

\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)

\(5x+47y=\left(5x+30y\right)+17y\)

\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)

b/

\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)

Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

2 tháng 12 2021

ko giúp đấy

17 tháng 1 2023

ác rứa

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

2 tháng 8 2016

Đặt A = 5x + 47y; B = x + 6y

Xét biểu thức: A - 5B = (5x + 47y) - 5.(x + 6y)

                               = (5x + 47y) - (5x + 30y)

                               = 5x + 47y - 5x - 30y

                               = 17y

Do A chia hết cho 17; 17y chia hết cho 17

=> 5B chia hết cho 17

Mà (5;17)=1 => B chia hết cho 17 (đpcm)

2 tháng 8 2016

Đặt A = 5x + 47y; B = x + 6y

Xét biểu thức: A - 5B = (5x + 47y) - 5.(x + 6y)

                               = (5x + 47y) - (5x + 30y)

                               = 5x + 47y - 5x - 30y

                               = 17y

Do A chia hết cho 17; 17y chia hết cho 17

=> 5B chia hết cho 17

Mà (5;17)=1 => B chia hết cho 17 (đpcm)