K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4

Mà x > y > 1  x - y > 0 

 ( x - y ) ( x4 + y) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) ( * )

+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y

            = x ( x4 + x3y + x2y2 + xy3 + y) - y ( x4 + x3y + x2y2 + xy3 + y

            = x5 + x4y + x3y2 + x2y+ xy4 - x4y -  x3y2 - x2y3 -  xy4 - y5

            = x5 - y5

 ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5 ( ** )

Từ ( * ) ; ( ** ) 

  ( x - y ) ( x4 + y) <  x5 - y5

Mà   x5 - y5 < x5 + y5 

 ( x - y ) ( x4 + y) <  x5 - y5

 ( x - y ) ( x4 + y) < x - y 

  x4 + y4 < 1 ( đpcm ) 

1 tháng 2 2016

tận cùng bàng 4

29 tháng 9 2023

Mình đã làm được rồi

4 tháng 7 2017

Hình như đề sai rồi

4 tháng 7 2017

đúng đề mà bạn

AH
Akai Haruma
Giáo viên
7 tháng 9

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$

2 tháng 10 2020

Phương trình tương đương với \(x^2+y^2=4x+2\left(1\right)\)

Ta có: \(x^2-4x-2=-y^2\le0\Rightarrow\left(x-\sqrt{6}-2\right)\le0\)

\(\Leftrightarrow2-\sqrt{6}\le x\le2+\sqrt{6}\)

\(\Leftrightarrow10-4\sqrt{6}\le4x+2\le10+4\sqrt{6}\left(2\right)\)

Từ 1 và 2 \(\Rightarrow10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\)

Nhận xét: bài toán áp dụng biến đổi tương đương 1 pt, giả bpt bậc 2.

* Biến đổi tương đương 1 pt:

\(x^2+y^2-4x-2=0\Leftrightarrow x^2+y^2=4x+2\left(1\right)\)

\(\Leftrightarrow x^2-4x-2=-y^2\left(2\right)\)

* BĐT: 

Ta có: \(y^2\ge0\Leftrightarrow-y^2\le0\)kết hợp với (2) ta có: \(x^2-4x-2\le0\)

* giải bpt bậc 2:

\(x^2-4x-2\le0\Leftrightarrow\left(x-\sqrt{6}-2\right)\left(x+\sqrt{6}-2\right)\le0\Leftrightarrow2-\sqrt{6}\le x\le2+\sqrt{6}\)

* Biến đổi tương đương bpt:

\(2-\sqrt{6}\le x\le2+\sqrt{6}\Leftrightarrow10-4\sqrt{6}\le4x+2\le10+4\sqrt{6}\)

Kết hợp với (1) ta có \(10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\left(\text{đ}pcm\right)\)

NV
17 tháng 9 2021

\(\sqrt{xy}\left(x-y\right)=x+y\)

\(\Rightarrow xy\left(x-y\right)^2=\left(x+y\right)^2\)

\(\Rightarrow xy\left[\left(x+y\right)^2-4xy\right]=\left(x+y\right)^2\)

\(\Rightarrow xy\left(x+y\right)^2=4\left(xy\right)^2+\left(x+y\right)^2\ge2\sqrt{4\left(xy\right)^2\left(x+y\right)^2}=4xy\left(x+y\right)\)

\(\Rightarrow x+y\ge4\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2+\sqrt{2};2-\sqrt{2}\right)\)

26 tháng 10 2020

Đặt \(A=\frac{x}{y^4+2}+\frac{y}{z^42}+\frac{z}{x^4+2}\ge1\)

\(A=\frac{y^4}{x+2}+\frac{z^4}{y+2}+\frac{x^4}{z+2}\ge1\)

Còn lại thì bạn tính tổng nha! Lớn hơn hoặc bằng 1 là được :))