Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+y^2+xy=\left(x+y\right)^2-2xy+xy\\ A=1-xy\)
Mà \(x+y=1\Leftrightarrow x=1-y\)
\(\Leftrightarrow A=1-\left(1-y\right)y=1-y+y^2=\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ A=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ A_{min}=\dfrac{3}{4}\Leftrightarrow x=y=\dfrac{1}{2}\)
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
Áp dụng bđt Cô-si \(1=x^2+y^2\ge2xy\)
\(\Rightarrow xy\le\frac{1}{2}\)
Ta có \(A=\frac{-2xy}{1+xy}\ge\frac{-\frac{2.1}{2}}{1+\frac{1}{2}}=-\frac{2}{3}\)
\("="\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Áp dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu = xảy ra <=>x=y=1/2
^_^
Ta có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{2^2}{2}=2\)
\(\Rightarrow4\left(x^2+y^2\right)\ge8\)
Lại có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{4}{2^2}=1\)
Do đó : \(P=4\left(x^2+y^2\right)+\frac{1}{xy}\ge8+1=9\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
\(A=x^2+y^2+xy=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{\left(x+y\right)^2}{4}=1-\frac{1}{4}=\frac{3}{4}\)