K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7

Lời giải:
$x+2y=1\Rightarrow x=1-2y$. Khi đó:

$A=(1-2y)y=y-2y^2=-(2y^2-y)=-[2(y^2-\frac{y}{2}+\frac{1}{4^2})-\frac{1}{8}]$

$=\frac{1}{8}-2(y-\frac{1}{4})^2\leq \frac{1}{8}$

Vậy $A_{\max}=\frac{1}{8}$.

Giá trị này đạt tại $y-\frac{1}{4}=0\Leftrightarrow y=\frac{1}{4}$

$x=1-2.\frac{1}{4}=\frac{1}{2}$

17 tháng 8 2018

giúp mình với

14 tháng 3 2016

A+B=x^2y+2xy^2-7x^2y^2+x^4+5x^2y^2-2x^2y-xy^2-3x^4-1

      =(x^2y-2x^2y)+(2xy^2-xy^2)-(7x^2y^2-5x^2y^2)+(x^4-3x^4)-1

     = -x^2y+xy^2-2x^2y^2-2x^4-1

ta có -x^2y+xy^2-2x^2y^2-2x^4 >0 hoặc =0

           =>gtln A+B=0-1=-1

     

mk ngu đại số lắm sorry nha Nhưng nếu hình thì mk giải đc

10 tháng 2 2016

Chắc đây là bài lp 7 ko?

28 tháng 2 2017

\(x+2y=1\Leftrightarrow x=1-2y\Leftrightarrow A=xy=\left(1-2y\right)y=y-2y^2=\frac{1}{8}-\left(2y^2-y+\frac{1}{8}\right)=\frac{1}{8}-2\left(y^2-2.\frac{1}{4}.y+\frac{1}{16}\right)=\frac{1}{8}-2\left(y-\frac{1}{4}\right)^2\)

Vì \(\left(y-\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow\frac{1}{8}-2\left(y-\frac{1}{4}\right)^2\ge\frac{1}{8}\)

Dấu "=" xảy ra khi \(\left(y-\frac{1}{4}\right)^2=0\Rightarrow y-\frac{1}{4}=0\Rightarrow y=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)

Vậy Amax=1/8 khi x=1/2 và y=1/4

28 tháng 2 2017

tìm max của A=xy nghĩa là j ?