K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

\(x+2y=1\Leftrightarrow x=1-2y\Leftrightarrow A=xy=\left(1-2y\right)y=y-2y^2=\frac{1}{8}-\left(2y^2-y+\frac{1}{8}\right)=\frac{1}{8}-2\left(y^2-2.\frac{1}{4}.y+\frac{1}{16}\right)=\frac{1}{8}-2\left(y-\frac{1}{4}\right)^2\)

Vì \(\left(y-\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow\frac{1}{8}-2\left(y-\frac{1}{4}\right)^2\ge\frac{1}{8}\)

Dấu "=" xảy ra khi \(\left(y-\frac{1}{4}\right)^2=0\Rightarrow y-\frac{1}{4}=0\Rightarrow y=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)

Vậy Amax=1/8 khi x=1/2 và y=1/4

28 tháng 2 2017

tìm max của A=xy nghĩa là j ?

28 tháng 2 2017

= 0(chắc thế )

28 tháng 2 2017

chịu thui bài này khó quá

AH
Akai Haruma
Giáo viên
30 tháng 7

Lời giải:
$x+2y=1\Rightarrow x=1-2y$. Khi đó:

$A=(1-2y)y=y-2y^2=-(2y^2-y)=-[2(y^2-\frac{y}{2}+\frac{1}{4^2})-\frac{1}{8}]$

$=\frac{1}{8}-2(y-\frac{1}{4})^2\leq \frac{1}{8}$

Vậy $A_{\max}=\frac{1}{8}$.

Giá trị này đạt tại $y-\frac{1}{4}=0\Leftrightarrow y=\frac{1}{4}$

$x=1-2.\frac{1}{4}=\frac{1}{2}$

7 tháng 6 2021

\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)

\(A=\left(5xy^2-xy^2\right)+\left(xy+2xy+xy\right)+\left(-\frac{1}{3}x^2y+x^2y\right)+6\)

\(A=4xy^2+4xy+\frac{2}{3}x^2y+6\)

b) để A+B=0 => B là số đối của A 

\(\Rightarrow B=-4xy^2-4xy-\frac{2}{3}x^2y-6\)

c) Ta có \(A+C=-2xy+1\Leftrightarrow4xy^2+4xy+\frac{2}{3}x^2y+6+C=-2xy+1\)

\(\Leftrightarrow C=-2xy+1-4xy^2-4xy-\frac{2}{3}x^2y-6\)

\(\Leftrightarrow C=\left(-2xy-4xy\right)+\left(1-6\right)-4xy^2-\frac{2}{3}x^2y\)

\(\Leftrightarrow C=-6xy-5-4xy^2-\frac{2}{3}x^2y\)

3 tháng 8 2017

x+2y = 1 => x = 1- 2y thay vào A  là sẽ ra 

\(A=-2xy^2+xy^2+\dfrac{1}{3}x^3y-\dfrac{1}{3}x^3y-x+x-4x^2y=-xy^2-4x^2y\)

bậc là 3

3 tháng 3 2022

Anh có thể giải kĩ hơn một chút được ko ạ?