Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)
M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)
Đặt \(\frac{1}{x^2+1}=y\)
Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)
Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10
<=> x2 = 9 <=> \(x=\pm3\)
Vậy MinM = 19/20 khi x = 3 hoặc x = -3
Lời giải:
ĐK: $x\neq 0$
\(P=\frac{-2x+2019+x^2}{x^2}(1)\) \(\Rightarrow Px^2=-2x+2019+x^2\)
\(\Leftrightarrow x^2(P-1)+2x-2019=0(*)\)
Vì PT $(1)$ tồn tại nên PT $(*)$ luôn có nghiệm
$\Rightarrow \Delta'_{(*)}=1-(P-1)(-2019)\geq 0$
$\Leftrightarrow P\geq \frac{2018}{2019}$
Vậy $P_{\min}=\frac{2018}{2019}$
\(N=\frac{1}{2x-x^2-4}\)ĐKXĐ : \(x\in R\)
\(N=\frac{1}{-\left(x^2-2x+4\right)}\)
\(N=\frac{1}{-\left(x^2-2x+1+3\right)}\)
\(N=\frac{1}{-\left[\left(x-1\right)^2+3\right]}\)
\(N=\frac{1}{-3-\left(x-1\right)^2}\ge\frac{-1}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)( thỏa mãn ĐKXĐ )
Vậy....
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
Vì \(x^2-8x+22=\left(x^2-8x+16\right)+6=\left(x-4\right)^2+6>0\) nên A luôn xác định.
Từ giả thiết ta có \(A\left(x^2-8x+22\right)=2x^2-16x+43\Leftrightarrow x^2\left(A-2\right)-8x\left(A-2\right)+\left(22A-43\right)=0\)
Để tồn tại GTNN của A thì phải tồn tại giá trị của x thỏa mãn GTNN đó, tức là PT trên có nghiệm.
Xét \(\Delta'=16\left(A-2\right)^2-\left(A-2\right)\left(22A-43\right)=\left(A-2\right)\left(11-6A\right)\ge0\)
\(\Leftrightarrow\frac{11}{6}\le A\le2\)
Vậy min A = 11/6 , max A = 2 (còn giá trị của x bạn tự tìm)
Mình bổ sung cho lời giải bạn Ngọc một chút (dù gì đây là bài lớp 8),
Bạn có thể tìm trước min, max của A ngoài nháp, lúc trình bày để né Delta bạn viết như sau:
VD: minA=\(\frac{11}{6}\).
Bước 1: Làm cho mẫu có số 6. \(A=\frac{6\left(2x^2-16x+43\right)}{6\left(x^2-8x+22\right)}\).
Bước 2: Làm cho tử có số 11. \(A=\frac{11\left(x^2-8x+22\right)+x^2-8x+16}{6\left(x^2-8x+22\right)}\).
Nếu bạn làm đúng thì phần dư ra là một bình phương, quả nhiên \(x^2-8x+16=\left(x-4\right)^2\).
Vậy \(A=\frac{11}{6}+\frac{\left(x-4\right)^2}{6\left(x^2-8x+22\right)}\ge\frac{11}{6}\). Đẳng thức xảy ra tại \(x=4\).
Hình như biểu thức không có max.
Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :
\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)
Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)
Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)