K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

\(x_1x_2=2\Rightarrow\sqrt{x_1x_2}=\sqrt{x_1}.\sqrt{x_2}=\sqrt{2}\)

đề cosghi nhầm không cho x1+x2 làm j?

17 tháng 6 2019

Trả lời:

\(\sqrt{x_1}.\sqrt{x_2}=\sqrt{x_1x_2}=\sqrt{2}\)

Chúc anh học tốt !!!

3 tháng 7 2021

\(x^2-2\left(2m+1\right)x+4m^2+4m=0\)

Để pt có hai ng pb\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow4>0\left(lđ\right)\)

\(\Rightarrow\)Pt luôn có hai ng pb với mọi m

\(\left\{{}\begin{matrix}x_1=\dfrac{2\left(2m+1\right)+\sqrt{4}}{2}=2m+2\\x_2=\dfrac{2\left(2m+1\right)-\sqrt{4}}{2}=2m\end{matrix}\right.\)

Có \(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left|2m+2-2m\right|=2m+2+2m\)

\(\Leftrightarrow2=4m+2\)

\(\Leftrightarrow m=0\)

Vậy...

3 tháng 7 2021

Tham khảo 

Tìm m để phương trình x2 – 2(2m + 1)x + 4m2 + 4m = 0 

a) Ta có: \(x^2-11x-26=0\)

nên a=1; b=-11; c=-26

Áp dụng hệ thức Viet, ta được:

\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)

và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)

 

x1+x2=3; x1*x2=-7

B=(x1+x2)^2-2x1x2

=9-2*(-7)=23

D=(x1+x2)^3-3x1x2(x1+x2)

=3^3-3*(-7)*3

=27+63=90

F=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=10*(-7)+69

=-1

\(C=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)

1 tháng 5 2023

mong bạn có thể giải thích chi tiết hơn

5 tháng 3 2022

\(0,1x^2-0,6x-0,8=0\\ \Leftrightarrow x^2-6x-8=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=6\\x_1.x_2=-8\end{matrix}\right.\)

11 tháng 3 2018

Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)

a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)

b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)

c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)

Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.

8 tháng 4 2020

8.1/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta=\left(m-9\right)^2-4.\left(-7\right)=m^2-18m+109>0\Leftrightarrow m\in R\)

Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=m+9\\x_1x_2=-7< 0\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=16\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=256\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=256\Leftrightarrow\left(m+9\right)^2=256-2\left(-7\right)-2\left|-7\right|=256\)

\(\Leftrightarrow\left(m+9\right)^2=256\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)