K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 7 2021

\(A=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)

\(A_{min}=24\) khi \(x=\dfrac{7}{2}\)

Hoặc là:

\(A=\dfrac{4x^2-4x+25}{x-1}=\dfrac{4x^2-28x+49+24\left(x-1\right)}{x-1}=\dfrac{\left(2x-7\right)^2}{x-1}+24\ge24\)

NV
29 tháng 7 2021

Biểu thức này chỉ có GTNN, không có GTLN

NV
16 tháng 9 2019

\(A=4\left(x-1\right)+\frac{25}{x-1}+4\ge2\sqrt{\frac{100\left(x-1\right)}{x-1}}+4=24\)

\(A_{min}=24\) khi \(\left(x-1\right)^2=\frac{25}{4}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)

23 tháng 5 2023

Biểu thức nào em?

24 tháng 5 2023

cả hai ạ

NV
24 tháng 12 2020

\(A=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)

Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)

Anh ơi giúp em vc này https://hoc24.vn/cau-hoi/admin-oi-xu-ly-ho-em-avt-cua-ban-nay-aban-theo-doi-em-nen-em-vao-xem-thu-trang-ca-nhan-va-tot-nhat-admin-nen-xem-se-hieuhttpshoc24vnviptienganhlamontu.330703432754

28 tháng 7 2016

A=4X - 4 + 25/(X-1)-4

ÁP dụng cho 2 cái đầu tiên

28 tháng 7 2016

đây tìm GTLN  nhé bạn k dùng đc cô si

26 tháng 7 2016

A= 4x-4+25/(x-1)-4

áp dụng cho 2 cái đầu tiên kìa

27 tháng 7 2016

hình như sai rồi bạn ơi

dây tìm gtln

11 tháng 10 2021

a: Ta có: \(A=\left(1-\dfrac{2\sqrt{x}-2}{x-1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{x\sqrt{x}+1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{x-1}:\dfrac{x-\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)