Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT BSC:
\(A=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\)
\(=\dfrac{\dfrac{1}{16}}{x}+\dfrac{\dfrac{1}{4}}{y}+\dfrac{1}{z}\)
\(\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x+y+z}=\dfrac{49}{16}\)
\(minA=\dfrac{49}{16}\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\dfrac{1}{4}}{x}=\dfrac{\dfrac{1}{2}}{y}=\dfrac{1}{z}\\x+y+z=1\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y;z\right)=\left(\dfrac{1}{7};\dfrac{2}{7};\dfrac{4}{7}\right)\)
Thay tọa độ A và B vào pt \(\Delta\) được 2 giá trị trái dấu \(\Rightarrow A;B\) nằm khác phía so với \(\Delta\)
\(\Rightarrow MA+MB\) nhỏ nhất khi và chỉ khi M nằm trên giao điểm của đường thẳng AB và \(\Delta\)
\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt
Phương trình AB: \(2\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+3=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x-y+3=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow M\left(-\dfrac{1}{3};\dfrac{7}{3}\right)\)
b, Ta có : \(0\le x\le1\)
\(\Rightarrow-2\le x-2\le-1< 0\)
Ta có : \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left(2-x\right)}\)
\(=2\left(m-1\right)x-m< 0\)
TH1 : \(m=1\) \(\Leftrightarrow m>0\)
TH2 : \(m\ne1\) \(\Leftrightarrow x< \dfrac{m}{2\left(m-1\right)}\)
Mà \(0\le x\le1\)
\(\Rightarrow\dfrac{m}{2\left(m-1\right)}>1\)
\(\Leftrightarrow\dfrac{m-2\left(m-1\right)}{2\left(m-1\right)}>0\)
\(\Leftrightarrow\dfrac{2-m}{m-1}>0\)
\(\Leftrightarrow1< m< 2\)
Kết hợp TH1 => m > 0
Vậy ...
\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\)
Để pt có hai nghiệm thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2=2\left(m-1\right)\le4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-2\right)\left(m+2\right)\ge0\\m\le3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\in\left[-2;0\right]\cup\left(2;+\infty\right)\cup\left\{2\right\}\\m\le3\end{matrix}\right.\)\(\Rightarrow m\in\left[-2;0\right]\cup\left[2;3\right]\)
\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_1\left(x_1+x_2\right)+8x_1x_2\)
\(=8\left(m-1\right)^3+8\left(-m^3+m^2+2m+1\right)\)
\(=-16m^2+40m\)
Vẽ BBT với \(f\left(m\right)=-16m^2+40m\) ;\(m\in\left[-2;0\right]\cup\left[2;3\right]\)
Tìm được \(f\left(m\right)_{min}=-144\Leftrightarrow m=-2\)
\(f\left(m\right)_{max}=16\Leftrightarrow m=2\)
\(\Rightarrow P_{max}=16;P_{min}=-144\)
Vậy....
Lời giải:
Áp dụng BĐT Cô-si ta có:
\(2x+\frac{1}{2x}\geq 2\)
\(y+\frac{9}{y}\geq 6\)
\(\frac{7x}{3}+\frac{7y}{3}=\frac{7}{3}(x+y)=\frac{49}{6}\)
Cộng theo vế:
$P\geq 2+6+\frac{49}{6}=\frac{97}{6}$
Vậy $P_{\min}=\frac{97}{6}$ tại $x=\frac{1}{2}; y=3$
Lời giải:Vì $f(x)\geq 0$ nên $\Delta=b^2-4ac\leq 0$
$\Leftrightarrow 4ac\geq b^2$
Áp dụng BĐT AM-GM:
$Q=\frac{4a+c}{b}\geq \frac{4\sqrt{ac}}{b}\geq \frac{4\sqrt{b^2}}{b}=\frac{4b}{b}=4$
Vậy $Q_{\min}=4$
mk chỉ cho cách lm ; bn tự lm cho bt nha
câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)
tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)
câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)
là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)
Áp dụng bất đẳng thức Cô-si với số x>0
Ta có :
\(x + \dfrac{1}{x} \geq 2\sqrt{x. \dfrac{1}{x}} = 2.\sqrt{1} = 2\)
Vậy min của A là 2 khi \(x = \dfrac{1}{x} \Leftrightarrow x = 1\)
\(\dfrac{x+1}{x}\) hay \(x+\dfrac{1}{x}\) ạ ?