K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

Ta thấy rằng \(\sqrt{x};\sqrt{y}\) không thể cùng đồng thời là số vô tỉ hoặc có 1 số vô tỉ, 1 số hữu tỉ hoặc có 1 số hữu tỉ, 1 số tự nhiên hoặc có 1 số vô tỉ, 1 số tự nhiên vì \(\sqrt{x}+\sqrt{y}=a\in N\)do đó \(\sqrt{x};\sqrt{y}\) chỉ có thể cùng hữu tỉ hoặc cùng là số tự nhiên

Giả sử \(\sqrt{x};\sqrt{y}\) là số hữu tỉ thì \(\left\{{}\begin{matrix}\sqrt{x}=\dfrac{b}{d}\left(b,d\ne0;b,d\in Z\right)\\\sqrt{y}=\dfrac{c}{e}\left(c,e\ne0;c,e\in Z\right)\end{matrix}\right.\); b,d cùng dấu; c,e cùng dấu; (b,d)=1; (c,e)=1

Ta có: \(\sqrt{x}+\sqrt{y}=\dfrac{b}{d}+\dfrac{c}{e}=\dfrac{be+cd}{de}=a\in N\)

\(\Rightarrow\left\{{}\begin{matrix}be+cd⋮d\\be+cd⋮e\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}be⋮d\\cd⋮e\end{matrix}\right.\). Mà (b,d)=1; (c,e)=1 nên \(\left\{{}\begin{matrix}e⋮d\\d⋮e\end{matrix}\right.\)=> d = e

Lại có: \(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}=a^2\in N\) và x;y \(\in N\)

nên \(2\sqrt{xy}=2.\dfrac{bc}{de}=2.\dfrac{bc}{d^2}=2.\dfrac{bc}{e^2}\in N\)

+) d (hay e) \(⋮2\) thì d2 (hay e2) \(⋮4\)\(2.\dfrac{bc}{d^2}\) (hay \(2.\dfrac{bc}{e^2}\)) \(\in N\)nên bc \(⋮2\) => \(\left[{}\begin{matrix}b⋮2\\c⋮2\end{matrix}\right.\), mâu thuẫn với (b,d)=1; (c;e)=1

+) d (hay e) \(⋮̸\)2 thì \(\dfrac{bc}{d^2}\in N\Rightarrow\) \(bc⋮d^2\) mà (b;d)=1 nên c \(⋮d^2\) hay \(c⋮e^2\), mâu thuẫn với (c;e)=1

Như vậy điều giả sử là sai

=> \(\sqrt{x};\sqrt{y}\in N\left(đpcm\right)\)

Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=1

2 tháng 3 2018

༺ ๖ۣۜPhạm ✌Tuấn ✌Kiệτ ༻Tâm đường tròn ở đâu

4 tháng 3 2018

R là số thực nhỉ???

27 tháng 12 2018

Ta có: \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\left(\sqrt{x+2\sqrt{3}}\right)^2=\left(\sqrt{y}+\sqrt{z}\right)^2\)

\(\Leftrightarrow y+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Leftrightarrow x-y-z+2\sqrt{3}=2\sqrt{yz}\)

\(\Leftrightarrow\left[\left(x-y-z\right)+2\sqrt{3}\right]^2=\left(2\sqrt{yz}\right)^2\)

\(\Leftrightarrow\left(x-y-z\right)^2+4\sqrt{3}.\left(x-y-z\right)+12=4yz\) (1)

- Nếu x - y - z = 0 thì (1) trở thành: \(\hept{\begin{cases}x-y-z=0\\4yz=12\end{cases}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\yz=3\end{cases}}}\)

  ta thấy x;y;z thuộc N nên yz=3=1.3=3.1

                               y=1;z=3 hoặc y=3; z=1 thì x vẫn bằng 4

\(\Rightarrow\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)

               (THỎA MÃN)

- Nếu x - y - z khác 0 

Ta có: \(\frac{4yz-\left(x-y-z\right)^2-12}{4\left(x-y-z\right)}=\sqrt{3}\) 

(x;y;z là số tự nhiên nên vế trái là số hữu tỉ, mà ở đây vế phải là căn 3 => Vô lý)

Vậy \(\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)

27 tháng 12 2018

cảm ơn bạn

15 tháng 1 2018

C.hóa \(x+y=1\) và dùng C-S:

\(VT^2\le\frac{2x}{\left(y+1\right)^2}+\frac{2y}{\left(x+1\right)^2}\le\frac{8}{9}=VP^2\)

\(BDT\Leftrightarrow\frac{x}{\left(2-x\right)^2}+\frac{y}{\left(2-y\right)^2}\le\frac{4}{9}\left(1\right)\)

Ta có BĐT phụ \(\frac{x}{\left(2-x\right)^2}\le\frac{20}{27}x-\frac{4}{27}\)

\(\Leftrightarrow-\frac{\left(2x-1\right)^2\left(5x-16\right)}{27\left(x-2\right)^2}\le0\) *Đúng*

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT_{\left(1\right)}\le\frac{20}{27}\left(x+y\right)-\frac{4}{27}\cdot2=\frac{4}{9}=VP_{\left(1\right)}\)

"=" khi \(x=y=\frac{1}{2}\)

25 tháng 7 2019
https://i.imgur.com/EOHqEKK.jpg
25 tháng 7 2019

Tớ cũng làm ra giống vậy nên cũng không hiểu nữa ;;-;;

15 tháng 10 2021

\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)

Đề sai

15 tháng 10 2021

\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)

\(=2\sqrt{x}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

A/

\(A=\frac{(\sqrt{x}+\sqrt{y})^2-(\sqrt{x}-\sqrt{y})^2}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}.\frac{x-y}{\sqrt{xy}}\\ =\frac{x+y+2\sqrt{xy}-(x+y-2\sqrt{xy})}{x-y}.\frac{x-y}{\sqrt{xy}}\\ =\frac{4\sqrt{xy}}{x-y}.\frac{x-y}{\sqrt{xy}}=4\)

Vậy biểu thức A không phụ thuộc giá trị vào biến.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

B/
\(B=\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{x+\sqrt{xy}+y}-2\sqrt{y}\\ =\sqrt{x}+\sqrt{y}-(\sqrt{x}-\sqrt{y})-2\sqrt{y}\\ =2\sqrt{y}-2\sqrt{y}=0\)

Vậy giá trị của biểu thức B không phụ thuộc vào giá trị của biến.

22 tháng 12 2023

\(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\left(dkxd:x,y\ge0,x\ne y\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x^2}-\sqrt{y^2}}.\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}.\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{4\sqrt{xy}}{\sqrt{xy}}=4\)

\(B=\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\left(dkxd:x,y\ge0,x\ne y\right)\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}-2\sqrt{y}\)

\(=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-2\sqrt{y}\\ =0\)

Vậy biểu thức A và B không phụ thuộc vào biến.

20 tháng 7 2018

Ta có : \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)

\(\Rightarrow A^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\)

Theo BĐT Bu - nhi - a - cốp - xki ta có :

\(A^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left[2\left(x+y+z\right)\right]=3.2=6\)

\(\Rightarrow A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\) khi \(x=y=z=\dfrac{1}{3}\)

20 tháng 7 2018

Thank you very much!!!!!!, my friend.