Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y,z>0\)
Áp dụng BĐT Caushy cho 3 số ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)
\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)
Áp dụng BĐT Caushy-Schwarz ta có:
\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)
\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)
\(P=0\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=0\)
Cho x,y là các số dương thỏa mãn \(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm GTNN của C = x+y
Đề bài sai, C không có giá trị nhỏ nhất
Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C
Ta có: \(Q=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}=\dfrac{2}{x^2+y^2}+\dfrac{6}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}\)
Áp dụng BĐT phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow2\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge2\left(\dfrac{4}{x^2+2xy+y^2}\right)=2\left[\dfrac{4}{\left(x+y\right)^2}\right]=2.\dfrac{4}{4}=2\)
Dấu "=" xảy ra khi x=y=1
Áp dụng BĐT phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)
Dấu"=" xảy ra khi x=y=1
\(\Rightarrow2xy\le2.1=2\)
\(\Rightarrow\dfrac{4}{2xy}\ge\dfrac{4}{2}=2\)
\(\Rightarrow Q=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\ge2+2=4\)
Dấu"=" xảy ra khi x=y=1
Áp dụng cosi
`1/x^2+1/y^2>=2/(xy)`
`=>1/2>=2/(xy)`
`=>xy>=4`
Aps dụng cosi
`=>x+y>=2\sqrt{xy}=2.2=4`
Dấu "=" xảy ra khi `x=y=4`
Có : \(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2}\cdot\dfrac{1}{y^2}}=\dfrac{2}{xy}\)
\(\Rightarrow xy\ge4\)
Ta có : \(A=x+y\ge2\sqrt{xy}=2\sqrt{4}=4\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy min A = 4 khi $x=y=2$
\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)
\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)
\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)
Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:
\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).
Không mất tính tổng quát, giả sử x + y = 0
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow x^3=-y^3\).
Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).
Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).
Từ giả thiết ta có:
\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+2\left(x+y\right).\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+10=-y^2\le10\)
Mà \(\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\le0\)
\(\Rightarrow\left(x+y+\frac{7}{2}\right)^2\le\frac{9}{4}\)
Giải ra ta được \(x+y+1\ge-4\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}x=-5\\y=0\end{cases}}\)
Vậy \(A_{MIN}=-4\) tại \(\orbr{\begin{cases}x=-5\\y=0\end{cases}}\)
bạn giải cái bất phương trình sai rồi: Min phải bằng -1, đề kêu 2 số thực x;y dương nên ko có chuyện x= -5 đâu
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{2}{\left(x+y\right)^2}=2\left(x+y=1\right)\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)
OMG