K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Điều kiện \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)

\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)  (\(\sqrt{x}+\sqrt{y}-1>0\))

\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) (\(\sqrt{xy}-1>0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}-1\right)^2\)

\(\Leftrightarrow4\sqrt{xy}=x+y-xy-1\)

Vì x, y nguyên nên \(\sqrt{xy}\) cũng phải nguyên

\(\Rightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) nguyên  (1)

Ta lại có: 

\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(\Rightarrow\sqrt{x}-\sqrt{y}\) nguyên (2)

Lấy (1) + (2) và  (1) - (2) ta có:

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}\\\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\end{cases}}\)

\(\Rightarrow\sqrt{x},\sqrt{y}\) là số nguyên

Vậy x, y là bình phương đúng của 1 số nguyên.

20 tháng 5 2017

mình sửa lại cái đề là: x, y nguyên nha m.n

12 tháng 8 2020

Với x = y \(\ge\)0=> \(\sqrt{x}=\sqrt{y}\) là số hữu tỉ

Với \(x\ne y>0\)

Đặt \(\sqrt{x}+\sqrt{y}=t\) là số hữu tỉ 

=> \(\frac{x-y}{\sqrt{x}-\sqrt{y}}=t\Rightarrow\sqrt{x}-\sqrt{y}=\frac{x-y}{t}\)  là số hữu tỉ 

=> \(\sqrt{x};\sqrt{y}\) là số hữu tỉ

29 tháng 10 2016

Ta có \(9x-4y=\left(3\sqrt{x}-2\sqrt{y}\right)\left(3\sqrt{x}+2\sqrt{y}\right)\)là số hữu tỷ

Vì \(\left(3\sqrt{x}-2\sqrt{y}\right)\)(1) là số hữu tỷ nên \(\left(3\sqrt{x}+2\sqrt{y}\right)\)(2) cũng là số hữu tỷ

Lấy (2) - (1) và (2) + (1) ta được

\(\hept{\begin{cases}4\sqrt{y}\\6\sqrt{x}\end{cases}}\)là 2 số hữu tỷ vậy \(\sqrt{x},\sqrt{y}\)là hai số hữu tỷ

10 tháng 10 2021

Tham khảo nha ông:

undefined

20 tháng 11 2019

Đẳng thức đã cho tương đương với 

\(x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy.\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(xy+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}+\left(\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow x+y-\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy+1\)

\(\Leftrightarrow\sqrt{1+xy}=|x+y|\)

Vì x,y là số hữu tỉ nên Vế phải của đẳng thức là số hữu tỉ => Điều phải chứng minh

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

Lời giải:

Đặt \(\sqrt{x}+\sqrt{y}=a\in\mathbb{Q}\)

\(\Rightarrow \sqrt{x}=a-\sqrt{y}\)

Bình phương 2 vế:
\(x=a^2+y-2a\sqrt{y}\)

\(\Rightarrow 2a\sqrt{y}=a^2+y-x\in\mathbb{Q}\) do \(a,x,y\in\mathbb{Q}\)

Ta thấy \(\left\{\begin{matrix} 2a\sqrt{y}\in\mathbb{Q}\\ 2a\in\mathbb{Q}\end{matrix}\right.\Rightarrow \sqrt{y}\in\mathbb{Q}\)

\(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}\in\mathbb{Q}\\ \sqrt{y}\in\mathbb{Q}\end{matrix}\right.\Rightarrow \sqrt{x}\in\mathbb{Q}\)

Ta có đpcm.

15 tháng 9 2023

a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

\(\Rightarrow2ab\text{=}2bc+2ca\)

\(\Rightarrow2ab-2bc-2ca\text{=}0\)

Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)

\(\text{=}a^2+b^2+c^2\)

Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)

\(\Rightarrow A\text{=}a+b-c\)

Vì a;b;c là các số hữu tỉ suy ra : đpcm

b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)

Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)

Từ đây ta thấy giống phần a nên :

\(B\text{=}a+b-c\)

\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)

Suy ra : đpcm.

Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.