Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2=6x-5\)
\(\left(x-3\right)^2+y^2=2^2\Rightarrow1\le x\le5\)
\(1\le x^2+y^2\le25\)
Cho x,y là hai số thực thỏa mãn:\(x^2+y^2-6x+5=0\).Tìm giá trị lớn nhất của P=x2 + y2 đạt tại x là ?
x^2+y^2-6x+5=0
<=>x^2-6x+9+y^2-4=0
<=> (x-3)^2+(y^2-4)=0
<=> (x-3)^2=0 hoặc y^2-4=0
<=> x=3 và y=-2;2
ta có P=x^2+y^2=3^2+2^2=13>=13
Max P=13 <=> x=3;y=-2;2
Ta có : (x+y)2+7x+7y+y2+6=0
( x2 + y2 + \(\frac{49}{4}\)+ 7x + 7y + 2xy ) + y2 - \(\frac{25}{4}\)= 0
( x + y + \(\frac{7}{2}\))2 = \(\frac{25}{4}\)- y2 \(\le\frac{25}{4}\)
\(\Rightarrow\frac{-5}{4}\le x+y+\frac{7}{2}\le\frac{5}{4}\)
\(\Rightarrow\frac{-15}{4}\le x+y+1\le\frac{-5}{4}\)
\(\Rightarrow\)......
lon so roi,
thay -5/4 thành -5/2 ; 5/4 thành 5/2
-15/4 thành -5 ; 5/2 thành 0